Chapter 6

Implementing Processes, Threads and
Resources

Introduction

= Scenario
= One process running
= One/more process performing I/0
= One/more process waiting on resources
= One process creating threads

= Most of the complexity stems from the need
to manage multiple processes/threads

Introduction

Process Manager
» CPU sharing
= Process synchronization
= Deadlock prevention

Implementing the Process Abstraction

P,CPU P,CPU P, CPU
— = = = 1 —
— /) = 1 —
L N]
P, Executable P; Executable P, Executable
Memory Memory Memory
I I I

OS interface

> OS Address
CPU Space

P; Address
ALU Space

P, Address

T — " Space
it— see
P; Address
»

Space

Machine Executable Memory

External View of the Process Manager

Application
Program
fork () CreateThread ()
CreateProcess ()
wait () exec () CloseHanfjle() . .
WaitForSingleObiject ()
y = 4 y = 4
= B B = B B
[T [T
== =5 S = =28
) % E’ S 5] % b S
L 9 S v S @ °
S s = = S s = =
D E O = 2 E o
(=" s (=" s
UNIX \ f Windows
Hardware

Process Manager Responsibilities

I

» Define & implement the essential
characteristics of a process and thread
= Algorithms to define the behavior
» Data structures to preserve the state of the

execution

» Define what “things” threads in the process
can reference — the address space (most of
the “things” are memory locations)

= Manage the resources used by the
processes/threads

= Tools to create/destroy/manipulate processes
& threads

Process Manager Responsibilities

I
= Tools to time-multiplex the CPU — Scheduling
the (Chapter 7)

= Tools to allow threads to synchronization the
operation with one another (Chapters 8-9)
= Mechanisms to handle deadlock (Chapter 10)

n Iiflf)chanisms to handle protection (Chapter

Modern Processes and Threads

| Thrdj in P, Thrd, in P

OS interface »
o
[—— "

—

Processes &Threads

1n i
g
Q,
An 3 %
) =
S]| 2
< > = g [aW
o =
2 s
- — g n
K
9
The Address Space
Address Address Executable
I Space Binding Memory
AI

il

\ 4
—

L I

; ! Files

> Other object:

10

Building the Address Space

|
= Some parts are built into the

environment
= Files
= System services
= Some parts are imported at runtime
= Mailboxes
= Network connections

= Memory addresses are created at
compile (and run) time

11

Tracing the Hardware Process
I

Machine is

Bootsta
Powered up p Process Interrupt P P P
I Loader Manager Handler 1! 2 n
‘d" ’l

% | Load the kernel ~

L e —-p

| Initialization -----------"7""

& Execute a thread"""""77"~ o i Bl

S Schedule ..=:::::::ZZ:::::::: ____ . I

8 lq | e.0.0

& | Service an interrupt R | »

g l

g |

e |

E |

=1

s l

|
|
: 1
v . n . . . n

12

The Abstract Machine Interface

Application Program

Abstract Machine Instructions

User Mode
Instructions

<

- |

>

Trap
Instruction

— L,
] fork()
"lopen() "Tcreate()
OS

B2

.,

\

User Mode
Instructions

Supervisor Mode
Instructions

13

Context Switching

Executable Memory

Initialization——»|

Interrupt

Process
Manager

Interrupt
Handler

P,

14

Process components

|
= Program
= defines behavior

= Data
» Resources

» Process Descriptor
= keeps track of process during execution

15

Process Descriptors

I
= OS creates/manages process abstraction

» Descriptor is data structure for each process
= Register values
» Logical state

Type & location of resources it holds

List of resources it needs

Security keys

etc. (see Table 6.1 and the source code of your
favorite OS)

16

Process Descriptor

FIELD

DESCRIPTION

Internal process name

An internal name of the process, such as an integer or table index,
used in the operating system code.

Btate

The process’s current state.

Owner

A process has an owner (identified by the owner’s internal
identification such as the login name}. The descriptor contains a field
for storing the owner identification.

Parent process
descriptor

A pointer to the process descriptor of this process’s parent

List of child process
descriptors

A pointer to a list of the child processes of this process.

List of reusable
resources

A pointer to a list of reusable resource types held by the process. Each
resource type will be a descriptor of the number of units of the
Tesource.

List of consumable
resources

Similar to the reusable resource list (see Section 6.3.2).

List of file descriptors

A special case of the reusable resource list.

Message queue

A special case of the consumable resource list.

Protection domain

A description of the access rights currently held by the process (see
Chapter 14).

CPU status register
content

A copy of each of the CPU status registers at the last time the process
exited the running state.

CPU general register
content

A copy of each of the CPU general registers at the last time the process
exited the running state.

17

Creating an executable program

Source
Modules

Generates separate
object code modules

Separate objects
each relative to 0

Relocatable One Iarge program
Object
Modules / 0-X
- (X+
Link Editor phrdlute o X+
Togram
A
Executable

L Maps relative address space to physical
memory location

Relocates modules one behind other

=>» Relocates addresses of all but first

=>» Resolves external reference to
library calls and external modules

18

Basic Memory Hierarchy

A

Fastest X T == “ &]

My R
L Ry Cache memory

Primary Memory, M,

Access Speed

Secondary Memory, M,

Slowest

19

Basic Memory Hierarchy...

= At any point in the same program, element can be in

= Secondary memory Ms
= Primary memory Mp
= Registers Mr

= Consistency is a Problem
» Ms#Mp=Mr (code vs data)
= When does one make them consistent?

20

10

Consistency Problem

= Scheduler switching out processes — Context Switch
= Is Instruction a Problem ???

= NO

» Instructions are never modified

» Separate Instruction and Data space

» Therefore, Mg; = Mp; = Mg;

21

Consistency Problem...

= Is Data a Problem ???
= YES
= Variable temporarily stored in register has value added to it
» Therefore, Mg; # M

= On context switch, all registers are saved
= Therefore, current state is saved

22

11

Process States

Focus on Resource
Management & Process
Management

Recall also that part of the
process environment is its
state

Running
Done

request

Start

Blocked Ready

State Transition Diagram

OIRCIRORCIROR o

23
Process States...
When process enters ‘Ready’ state, it must

compete for CPU. Memory has already

been allocated

Running <3>
Process has CPU Done "
reques

Process requests resource that is
immediately available >NO blocking

Start

Process requests resource that is NOT yet Blocked @ Ready

available

Resource allocated,
memory re-allocated?

State Transition Diagram

24

12

Resources & Resource Manager

= 2 types of Resources
= Reusable (Memory)
» Consumable (Input/Time slice)

Request

—

v Resource Queue

Process requesting resource unit(s)
- Getit, or
- Block => Stay in Queue

e N1its Of ResOUrce R
Resource Pool

25

Resource Descriptor

= Each Resource R has a Resource Descriptor associated
with it (similar to the process)

=> there is a “Status” for that Resource, and
=> a Resource Manager to manage it

£AI1d UL d QMESUUILE WESULIPLUL

FIELD DESCRIPTION

Internal resource | An internal name for the resource used by the operating system code.

name /dev/...

Total units The number of units of this resource type configured into the system, 6
% Available units The number of units currently available. 3

List of available The set of available units of this resource type that are available for use by

units rocesses.

P A B, C
List of blocked | The list of processes that have a pending request for units of this resource
processes | type Only if*x=0

26

13

Creating Processes

Parent Process needs ability to
= Block child

= Activate child

= Destroy child

» Allocate resources to child

True for User processes spawning child
True for OS spawning init, getty, etc.

Process hierarchy a natural,
if fork/exec commands exist

27

Factoring in additional Control Complexities

Recall:
= A parent process can suspend a child process

Therefore, if a child is in run state and goes to ready
(time slice up), and the parent runs and decides to
suspend the child, then how do we reflect this in the
process state diagram ???

We need 2 more states
= Ready suspended
» Blocked suspended

28

14

Process State diagram reflecting Control

Running
Done 0

request - Not Blocked
request

suspend - Suspended
Sta.l_'i Schedule g - No memory
""" suspend o
activate
- Not blocked .1 readySuspended
- Not suspendéd Allocate Allocate
- Has memory suspend » €., - Blocked
» 4 *— . 2 - Suspended
....... blockedActive blockedsuspended -
-Blocked . P No memory
- Not suébended
- No memory
29
Process Manager Overview
Program Process
Abstract Computing Environment
File [Deadlock || Process
Manager | Protection Description
‘ Synchronization
y y y N
Device = Memory
Manager . Manager Scheduler Resource
Manager
n
Devices || Memory | | CPU Other H/W|

30

15

* Process Management under Linux
|

Mir Farooq Al

Processes in Linux

m Also called tasks

= Task table or process table defined in
src/linux/include/sched.h

extern struct task_struct
*pidhash [PIDHASH_SZ];

= Can also be accessed as a doubly-linked
list p—>next_task and p—>prev_task

32

16

Process or task descriptor

= Called task_struct
= Present in src/include/linux/sched.h
= Contains various fields to indicate
= State
= priority
pointers to parent, children, other tasks in pid list
. tty
memory location
file descriptors

33

Process States

= Linux identifies six different states
including

1. TASK_ RUNNING

2. TASK_ _INTERRUPTIBLE

3. TASK UNINTERRUPTIBRLE

4. TASK ZOMBIE

5. TASK_STOPPED

6. TASK_EXCLUSIVE

34

17

Process Creation

= Remember in traditional UNIX, we use
fork() and then typically exec()

= fork() duplicates resources owned by
parent for child process and copies
them to new address space

= This method is slow and inefficient,
since exec() wipes out address space
anyway

35

Process creation in Linux

= Copy-On-Write technique
= Lightweight processes
» Vfork()

36

18

Copy-on-write

= Child pages are pointers to parent
pages

= If child makes a change to a page, a
new copy is made for the child

= This way, you avoid making separate
copies of pages unnecessarily

37

Lightweight processes

= Allow parent and child processes to
share many kernel data structures

= created in Linux by function called
__clone()

= Uses non-standard clone() system call

38

19

vfork()

= Creates a process that shares memory
address of parent

= Parent is blocked until child exits or
executes a new program by doing
exec()

39

User view of processes

= Can use ps command with various
options, for example,
= PS —aux
» ps —ef

40

20

/proc file system

» process information pseudo file system
= DO man proc to get more info

= /proc directory contains

» Numerical subdirectory for each running
process

» A number of other files containing kernel
table information

41

/proc... continued

= Files include
= cpuinfo — contains CPU specs

= uptime — time in secs since machine was
last rebooted and idle time since then

= version — kernel version

» loadavg — Load average of machine over
the past 1, 5 and 15 minutes

42

21

Process directories

= One subdirectory for each running process

= Files include
= cmdline

cwd

environ

exe

fdm

map

mem

root

43

References

= Linux Kernel 2.4 internals, Tigran
Aivazian http://www.tldp.org/LDP/IKi/

= Modern Operating Systems, 2™ Ed., A.
Tanenbaum

= Understanding the Linux Kernel, D.
Bovet, and M. Cesati

44

22

