
1

1

Device Management

Taken from

Chapter 11, Operating System Principles, Bic and Shaw, 2003, Prentice Hall

2

Basic Issues

� I/O devices:

� Communication devices

� Input only (keyboard, mouse, joystick)

� Output only (printer, display)

� Input/output (network card)

� Storage devices

� Input/output (disk, tape)

� Input only (CD-ROM)

2

3

Basic Issues

� Main tasks of I/O system:

� Present logical (abstract) view of devices

� Hide details of hardware interface

� Hide error handling

� Facilitate efficient use

� Overlap CPU and I/O

� Support sharing of devices

� Protection when device is shared (disk)

� Scheduling when exclusive access needed (printer)

4

A Hierarchical Model of I/O

Abstract I/O
interface:
Block devices,
character devices,
network

Device-independent
software:
Buffering,
scheduling, caching

Device-dependent
software:
I/O drivers
(supplied by device
manufacturer)

Figure 11-1

3

5

6

4

7

I/O System Interface

� Block-Oriented Device Interface

� Operations: open, read, write, close

� File System and Virtual Memory System

� Stream-Oriented Device Interface

� = “character-device” interface

� Operations: get, put
Also, open & close to reserve & to release

the exclusive access normally needed

(Tapes are both Block-Oriented and Stream-Oriented)

� Network Communications

� Key abstraction: socket

� Protocols

8

I/O System Interface

� Block-Oriented Device Interface

� Stream-Oriented Device Interface

� Network Communications

� Key abstraction: socket

� Protocols:

� Connection-based (virtual circuits)

� Connection-less (datagrams)

� Operations: connect, accept, write/send, read/receive

5

9

I/O Devices

� Display monitors

� Character or
graphics oriented

� Different data rates:

� 25 x 80 characters
vs 800 x 600 x
256

� 30-60 times/sec

Figure 11-2

10

I/O Devices

� Keyboards
� Most common: “QWERTY”

� Very low data rate (<10 char/sec)

� Pointing devices

� Mouse (optical, optical-mechanical)

� Trackball

� Joystick

� Low data rate (hundreds of bytes/sec)

6

11

I/O Devices

� Printers

� Line printers, dot-matrix, ink-jet, laser

� Low data rates

� Character-oriented

� Scanners

� Digitize picture into bit map (similar to video RAM)

� Low data rates

12

I/O Devices

� Floppy disks

� Surface, tracks/surface, sectors/track, bytes/sector

� All sectors numbered sequentially 0..(n-1)
(physical location vs logical numbering)

Figure 11-3(a) Physical Figure 11-3(b) Logical

7

13

I/O Devices

� Floppy disks

� Track skew

� Account for seek-to-next-track to minimize latency

� Double-sided floppy

� Tracks with same diameter: cylinder

� Number sectors within cylinder consecutively to minimize seek

Figure 11-3(c) Figure 11-13(d)

14

I/O Devices

� Hard disks

� Multiple surfaces

� Higher densities and
data rates than floppy

floppy hard disk
bytes/sec 512 512-4096
sec/track 9,15,18, 36 100-400
tracks/surf 40, 80,160 1000-10,000
surf 1-2 2-24
seek 30-100 ms 5-12 ms
rotation 400-700 rpm 3600-10,000 rpm

Figure 11-4

8

15

I/O Devices

� Optical disks

� CD-ROM, CD-R (WORM), CD-RW

� Originally designed for music

� Data stored as continuous spiral,
subdivided into sectors

� Constant linear speed (200-530 rpm)

� Higher storage capacity than magnetic disks:
0.66 GB/surface

16

I/O Devices

� Data transfer rates of disks

� Sustained: continuous data delivery

� Peek: transfer once read/write head is in place

� Depends on rotation speed and data density

� 1 revolution passes over all sectors of 1 track

� Example: 7200 rpm, 100 sect/track, 512 B/sect

� 7200 rpm: 60,000/7200=8.3 ms/rev

� 8.3/100 = 0.083 ms/sector

� 512 bytes transferred in 0.083 ms: ~6MB/s

9

17

I/O Devices

� Magnetic tapes (reel or cartridge)

� Large storage capacity (GB)

� Data transfer rate: ~ 2 MB/sec

� Networks (interface card)

� Ethernet, token ring, slotted ring

� Controller implements protocol to
accept, transmit, receive packets

� Modem

� Convert between analog and digital (phone lines)

� Character-oriented (like printer and keyboard)

18

Device Drivers

� Accept command from
application
� get/put character, read/write block,

send/receive packet

� Interact with (hardware)
device controller to
carry out command

� Typical device controller
interface: set of registers

� Example: serial or parallel
port on PC
� Generic driver reads/writes

characters to registers
Figure 11-6

10

19

Device Drivers

� Memory-mapped vs
Explicit device interface

� Similar idea to
memory-mapped files

� Explicit: Special I/O instruction:

io_store cpu_reg,dev_no,dev_reg

� Memory-mapped: Regular CPU instruction:
store cpu_reg, n (n is a memory address)

Figure 11-7

20

Programmed I/O with Polling

� CPU is responsible for

� Moving every character to/from controller buffer

� Detecting when I/O operation completed

� Protocol to input a character:

Figure 11-8

11

21

Programmed I/O with Polling

� Driver operation to input sequence of characters
i = 0;
do { write_reg(opcode, read);

while (busy_flag == true) {…};
mm_in_area[i] = data_buffer;
increment i;
compute;

} while (…)

22

Programmed I/O with Polling
� What to do while waiting?

� Idle (busy wait)
� Some other computation

� How frequently to poll?
� Give up CPU

� Device may remain unused for a long time

Figure 11-9

12

23

Programmed I/O with Interrupts

� CPU is responsible for

� Moving characters to/from controller buffer, but

� Interrupt signal informs CPU when I/O operation completes

� Protocol to input a character:

Figure 11-10

24

Programmed I/O with Interrupts
� Compare Polling with Interrupts:

i = 0;
do { write_reg(opcode, read);
�������� while (busy_flag == true) {…};

mm_in_area[i] = data_buffer;
increment i;
compute;

} while (…)

i = 0;
do { write_reg(opcode, read);
�������� block to wait for interrupt;

mm_in_area[i] = data_buffer;
increment i;
compute;

} while (…)

13

25

Programmed I/O with Interrupts
� Example: Keyboard driver

i = 0;
do { block to wait for interrupt;

mm_in_area[i] = data_buffer;
increment i;
compute(mm_in_area[]);

} while (data_buffer != ENTER)
� Timing of interrupt-driven I/O

� More OS overhead but better device utilization

Figure 11-11

26

DMA

� CPU only initiates operation

� DMA controller transfers data directly to/from main memory

� Interrupt when transfer completed

� Protocol to input data using DMA:

Figure 11-12

14

27

DMA

� Driver operation to input sequence of characters
write_reg(mm_buf, m);
write_reg(count, n);
write_reg(opcode, read);
block to wait for interrupt;

� Writing opcode triggers DMA controller

� DMA controller issues interrupt after n chars in memory

� I/O processor (channel)
� Extended DMA controller
� Executes I/O program in own memory

28

Device Management

� Device-independent techniques

� Reasons for buffering

� Allows asynchronous operation
of producers and consumers

� Allows different
granularities of data

� Consumer or producer
can be swapped out
while waiting for
buffer fill/empty

Figure 11-13

15

29

Device Management

� Single buffer operation

� Double buffer (buffer swapping)

� Increases overlap

� Ideal when: time to fill = time to empty = constant

� When times differ, benefits diminish

Figure 11-14(a,b)

30

Device Management

� Circular Buffer

� When average times to fill and empty are comparable but vary
over time: circular buffer absorbs bursts

� Producer and consumer each use an index

� nextin gives position of next input

� nextout gives position of next output

� Both are incremented modulo n at end of operation

� Buffer Queue

� Variable size buffer for more efficient use of memory

� Depends on linked data structures and dynamic memory
management. More (CPU) time consuming.

� Buffer Cache: pool of buffers for repeated access

16

31

Device Management

� Error handling

� Persistent vs Transient, SW vs HW

� Persistent SW error

� Repair/reinstall program

� Other errors: Build in defense mechanisms

� Examples:

� Transient SW errors:
Error correcting codes, retransmission

� Transient HW errors:
Retry disk seek/read/write

� Persistent HW errors:
Redundancy in storage media

32

Device Management

� Bad block detection and handling

� Block may be defective as a manufacturing fault or
during use (a common problem)

� Parity bit is used to detect faulty block

� The controller bypasses faulty block by renumbering

� A spare block is used instead

� Two possible
remappings:

� More work
but contiguity
of allocation
preserved

Figure 11-17

17

33

Device Management

� Stable storage

� Some applications cannot tolerate any loss of data (even
temporarily)

� Stable storage protocols:

� Use 2 independent disks, A and B

� Write: write to A; if successful, write to B

� Read: read from A and B; if A!=B, go to Recovery

� Recovery from Media Failure: A or B contains correct
data; remap failed disk block

� Recovery from Crash: if before writing A, B is correct;
if after writing A, A is correct; recover from whichever
is correct

34

Device Management
� RAID (Redundant Array of Independent Disks)

� Increased performance through parallel access

� Increased reliability through redundant data

� Maintain exact replicas of all disks

� Most reliable but wasteful

� Maintain only partial
recovery information

� (e.g. error correcting codes)

Figure 11-19

18

35

Device Management

� Disk Scheduling

� Minimize seek time and rotational delay

� Requests from different processes arrive concurrently:

� Scheduler must attempt to preserve locality

� Rotational delay:

� Order requests to blocks on each track in the direction
of rotation: access in one rotation

� Proceed with next track on same cylinder

36

Device Management

� Minimizing seek time: more difficult

� Read/write arm can move in two directions

� Minimize total travel distance

� Guarantee fairness

� FIFO: simple,
fair, but inefficient

� SSTF: most
efficient but
prone to
starvation

� (Elevator) Scan:
fair, acceptable
performance

Figure 11-20

