v!'_ Processes and Threads

Process

= Heavy-weight’ unit of computation

s Process descriptor
» Object program (Program text)
= Data segment
= Stack
= Heap
= Process Status Word (PSW) — executing, waiting, ready
= Resources acquired

CS 3204: Operating Systems, Fall 2002
September 1, 2002 © Mir Farooq Ali, 2002 2

Process contents

s Memory for each process — ciobalsistatic variabies
contains -
= Program text
= Globals/static variables '
= Stack T
» Heap Heap
(User Code » Libraris)

CS 3204: Operating Systems, Fall 2002
September 1, 2002 © Mir Farooq Ali, 2002

Main Memory

A
Process 1
Globals/Static Variables
Process 2
Stack
(0]
(&)
]
o
5]
@
[72)
] Process n-1 T
Heap
Process n
Program Text
(User Code + Libraries)

Operating System
(kernel)

CS 3204: Operating Systems, Fall 2002
September 1, 2002 © Mir Farooq Ali, 2002

Process Control Block (PCB)

= Also called Process Descriptor

= Each process has per-process state maintained by
the OS

Identification: process, parent, user, group, etc.
Address space: virtual memory, memory limits

I/0 state: file handles (file system), communication
endpoints (network), etc.

Accounting information
Program counter, Stack counter

= Details in later chapter

CS 3204: Operating Systems, Fall 2002

September 1, 2002 © Mir Farooq Ali, 2002

Thread

= Thread: light-weight process
= OS maintains minimal internal state information
= Usually instantiated from a process

= Each thread has its OWN unique descriptor
» Data, Thread Status Word (TSW)

= SHARES with the parent process (and other threads)
= Program text

s Resources
« Parent process data segment

CS 3204: Operating Systems, Fall 2002
September 1, 2002 © Mir Farooq Ali, 2002 6

Process Vs Threads

m Processes require substantially more OS
overhead in creation and maintenance

Process 1 Process 1 Process 1 Process
\\ | | i
User)
space
Thread Thread
Kernel K |
space Kernel erne
(a) (b)

Taken from Modern Operating Systems, 2" Ed, Tanenbaum, 2001

CS 3204: Operating Systems, Fall 2002
September 1, 2002 © Mir Farooq Ali, 2002 7

Thread space

= Data is shared among all
threads

s Each thread maintains it’s
own stack

= Each thread has its own
Program Counter (PC)

Globals/Static Variables

Stack (Thread 1)

Stack (Thread 2)

Stack (Thread 3)

T

Heap

PC (Thread 1)

-

Program Text
(User Code + Libraries)

PC (Thread 2)

PC (Thread 3)

CS 3204: Operating Systems, Fall 2002
September 1, 2002 © Mir Farooq Ali, 2002

wait()

s Used by parent process to wait on ONE child
process to finish

m 1Nt wail

m return va
process t

t (&status) ;

ue of wait is the process id of child
nat just finished

a if no chilc

processes, wait returns —1

immediately

September 1, 2002

CS 3204: Operating Systems, Fall 2002
© Mir Farooq Ali, 2002 9

wait() ... ctd

= wait returns value if child process
» Called function exit()... or terminated normally
= gets terminated by a signal

m returns exit status of child in variable status

CS 3204: Operating Systems, Fall 2002
September 1, 2002 © Mir Farooq Ali, 2002 10

waitpid()

= Used by parent to wait on a specific child
process to terminate indicated by pid

m int waitpid(pid, &status, options)

m pid: process id of the child process parent
waits on

CS 3204: Operating Systems, Fall 2002
September 1, 2002 © Mir Farooq Ali, 2002 11

pipes

x One form of inter-process communication
(IPC)

= follows message-passing paradigm of IPC

CS 3204: Operating Systems, Fall 2002
September 1, 2002 © Mir Farooq Ali, 2002

12

pipes....ctd

Process 2

Process 1 %)

fd[1l]

int fds[2];

: /
!
1
/
!

£fd[0]

retval = pipe(fd);

= Creates two file descriptors, one for reading,
the second for writing

CS 3204: Operating Systems, Fall 2002
© Mir Farooq Ali, 2002

September 1, 2002

13

pipes...ctd

int fds[2]; char s[100];

retval = pipe (fds);

pid = fork();

if(pid !'= 0){ /* parent process
write (fds[1l], “hello”, 6);

}

else { /* child process */
read (fds[0], s, 100);
printf (“Read %s\n”, s);

CS 3204: Operating Systems, Fall 2002
September 1, 2002 © Mir Farooq Ali, 2002

*/

14

What are pthreads?

= A standardized programming interface

s For UNIX systems, specified by the IEEE
POSIX 1003.1c standard (1995).

= Implementations which adhere to this

standard are referred to as POSIX threads, or
Pthreads.

CS 3204: Operating Systems, Fall 2002
September 1, 2002 © Mir Farooq Ali, 2002 15

Why pthreads over fork()?

= Primary reason is performance gains
s Less OS overhead in creating a new thread

» All threads use same address space, so
communication between threads is easier

m Sgcc —o firstthread firstthread.c
—lpthread

CS 3204: Operating Systems, Fall 2002
September 1, 2002 © Mir Farooq Ali, 2002 16

pthread creation

s Use pthread_ create function

pthread_create(thread, attr, routine, arqg)
s thread: Name of this thread
s attr: Thread attributes

= routine: function that gets executed once thread is
started
= arg. A single argument to be passed to routine, cast
as pointer of type void, passed by reference.
« For multiple arguments, bundle them up in a struct and
pass struct to routine

CS 3204: Operating Systems, Fall 2002
September 1, 2002 © Mir Farooq Ali, 2002 17

First pthread program

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 9!
int main ()
{

pthread_t threads[NUM_THREADS];

int rc, t;

for (t=0;t < NUM_THREADS; t++) {

printf ("Creating thread %d\n", t);

rc = pthread_create (&threads[t], NULL, PrintHello,
(void *)t);

}
pthread_exit (NULL) ;

CS 3204: Operating Systems, Fall 2002
September 1, 2002 © Mir Farooq Ali, 2002 18

First pthread program... ctd

vold *PrintHello (void *threadid)

{
printf ("%d: Hello World!\n", threadid);
pthread_exit (NULL) ;

}

m pthread_exit (void *status): Used to explicitly
terminate a thread

= Thread can use the status variable to specify its status; pass
data to "joining’ threads

CS 3204: Operating Systems, Fall 2002
September 1, 2002 © Mir Farooq Ali, 2002 19

pthreads... ctd

m pthread_join () : Analogous to wait() for
processes.

= Allows threads to join’ to form single thread
of execution

CS 3204: Operating Systems, Fall 2002
September 1, 2002 © Mir Farooq Ali, 2002 20

Second example

#include <pthread.h>
#include <stdio.h>

int main (void) {
int N = 8;
pthread_t hThread; int fact;

pthread_create (&hThread, NULL, (void *)ChildThread,
(void *)N);
pthread_join (hThread, (void *) &fact);

printf ("Factorial of N = %d\n", fact); return O;

}

CS 3204: Operating Systems, Fall 2002
September 1, 2002 © Mir Farooq Ali, 2002 21

Second example... ctd

vold ChildThread (int N)

{
int i; 1int fact = 1;

for (i=1; i<=N; ++1)

{ fact*=1i; }

pthread_exit ((void *) fact);

CS 3204: Operating Systems, Fall 2002
September 1, 2002 © Mir Farooq Ali, 2002

22

Reference for pthreads

» Posix threads programming

http://www.lInl.gov/computing/tutorials/worksh
ops/workshop/pthreads/MAIN.html#Pthread

= Introduction to pthreads

http://phoenix.liunet.edu/~mdevi/pthread/Intro
.htm

CS 3204: Operating Systems, Fall 2002
September 1, 2002 © Mir Farooq Ali, 2002 23

