* Chapter 2: Using the OS
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Abstract Machine Entities

I
» Process: A sequential program in execution

» Resource:. Any abstract resource that a
process can request, and which may can
cause the process to be blocked if the
resource is unavailable.

» File: A special case of a resource. A linearly-
addressed sequence of bytes. “A byte
stream.”
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Classic Process

OS implements {abstract machine} — one per
task

Multiprogramming enables N programs to be
space-muxed in executable memory, and time-
muxed across the physical machine processor.

Result: Have an environment in which there can
be multiple programs in execution
concurrently*, each as a processes

* Concurrently: Programs appear to execute simultaneously
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Process Abstraction
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Example

int main() {
int a;
cin >> a;
switch (a) {
case 1: do_funl(); break;
case 2: do_fun2(); break;
case 3: do_fun3(); break;

What happens if three users on an
UNIX machine simultaneously run
this program with different values
of a?
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Modern Process & Thread

s Divide classic process:

» Process is an infrastructure in which execution
takes place — address space + resources

» Threadis a program in execution within a
process context — each thread has its own stack
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More on Processes

A Abstraction of processor resource
» Programmer sees an abstract machine environment with
spectrum of resources and a set of resource addresses
(most of the addresses are memory addresses)
» User view is that its program is the only one in execution
» OS perspective is that it runs one program with its resources
for a while, then switches to a different process (context
switching)
= OS maintains
» A process descriptor data structure to implement the process
abstraction
» Identity, owner, things it owns/accesses, etc.
» Tangible element of a process

= Resource descriptors for each resource
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Address Space

Process must be able to reference every
resource in its abstract machine

Assign each unit of resource an address
= Most addresses are for memory locations
» Abstract device registers
= Mechanisms to manipulate resources

Addresses used by one process are
inaccessible to other processes

Say that each process has its own address
space
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Shared Address Space

» Classic processes sharing program = shared address
space support

= Thread model simplifies the problem

= All threads in a process implicitly use that process’s
address space , but no “unrelated threads” have
access to the address space

» Now trivial for threads to share a program and data

» If you want sharing, encode your work as threads in a
process

» If you do not want sharing, place threads in separate
processes
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UNIX Processes
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‘ UNIX Processes

= Each process has its own address space
» Subdivided into text, data, & stack segment
» a.out file describes the address space

» OS kernel creates descriptor to manage
process

» Process identifier (PID): User handle for the
process (descriptor)

s Try "ps” and “ps -aux” (read man page)
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Creating/Destroying Processes

-I UNIX fork () creates a process
= Creates a new address space
= Copies text, data, & stack into new adress

space

= Provides child with access to open files

» UNIX wait () allows a parent to wait for a
child to terminate

s UNIX execea() allows a child to run a new
program
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Creating a UNIX Process

int pidvValue;

pidvalue = fork(); /* Creates a child process */
if (pidvalue == 0) {

/* pidvalue is 0 for child, nonzero for parent */

/* The child executes this code concurrently with parent */
childsPlay (..); /* A procedure linked into a.out */
exit (0);

}

/* The parent executes this code concurrently with child */
parentsWork (..);

wait (...);
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Child Executes a different Program

int pid;
/* Set up the argv array for the child */

/* Create the child */
if ((pid = fork()) == 0) |
/* The child executes its own absolute program */
execve (childProgram.out, argv, O0);
/* Only return from an execve call if it fails */

printf (“Error in the exec .. terminating the child ..”);

exit (0);

wait (..); /* Parent waits for child to terminate */
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Example: Parent
L}
#include <sys/wait.h>
#define NULL 0
int main (void)
{
if (fork() == 0){ /* This is the child process */
execve ("child", NULL, NULL) ;
exit (0); /* Should never get here, terminate */
}
/* Parent code here */
printf ("Process[%d]: Parent in execution ...\n", getpid());
sleep(2);
if (wait (NULL) > 0) /* Child terminating */
printf ("Process[%d]: Parent detects terminating child \n",
getpid());
printf ("Process[%d]: Parent terminating ...\n", getpid());
}
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Example: Child

int main (void)
{
/* The child process's new program
This program replaces the parent's program */

printf ("Process[%d]: child in execution ...\n", getpid());
sleep(l);
printf ("Process[%d]: child terminating ...\n", getpid());
}
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UNIX Files

I
= UNIX and NT try to make every resource
(except CPU and RAM) look like a file

= Then can use a common interface:

open Specifies file name to be used
close Release file descriptor

read Input a block of information
write Output a block of information
1seek Position file for read/write
ioctl Device-specific operations
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UNIX File Example

I© #include <stdio.h>

#include <fcntl.h>

int main() {
int inFile, outFile;
char *inFileName = “in_test”;
char *outFileName = “out_test”;
int len;
char c;

inFile = open(inFileName, O_RDONLY) ;
outFile = open (outFileName, O_WRONLY) ;
/* Loop through the input file */
while ((len = read(inFile, &c, 1)) > 0)
write (outFile, &c, 1);
/* Close files and quite */
close (inFile);
close (outFile);
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‘ Shell Command Line Interpreter
|
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‘ The Shell Strategy
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Bootstrapping

= Computer starts, begins executing a
bootstrap program -- initial process

= Loads OS from the disk (or other device)

= Initial process runs OS, creates other
processes
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Initializing a UNIX Machine

/etc/passwd
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Objects

A recent trend is to replace processes by
objects

Objects are autonomous

Objects communicate with one another using
messages

Popular computing paradigm
Too early to say how important it will be ...
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