* Chapter 2: Using the OS
|

Basic abstraction

Abstract
Program :’ Machine

7

A
Abstract
Program || ™%\ iachine =y

Abstract

:’ Machine

Program

CS 3204: Operating Systems

Result

Result

Result

Abstract Machine Entities

I
» Process: A sequential program in execution

» Resource:. Any abstract resource that a
process can request, and which may can
cause the process to be blocked if the
resource is unavailable.

» File: A special case of a resource. A linearly-
addressed sequence of bytes. “A byte
stream.”

CS 3204: Operating Systems 3

‘ Algorithms, Programs, and Processes
|

Execution Engine

Files

Binary Data
Program

-

Algorithm |
Source
Program

Other
Resources

Process

CS 3204: Operating Systems

Classic Process

OS implements {abstract machine} — one per
task

Multiprogramming enables N programs to be
space-muxed in executable memory, and time-
muxed across the physical machine processor.

Result: Have an environment in which there can
be multiple programs in execution
concurrently*, each as a processes

* Concurrently: Programs appear to execute simultaneously
CS 3204: Operating Systems 5

Process Abstraction

CS 3204: Operating Systems 6

Example

int main() {
int a;
cin >> a;
switch (a) {
case 1: do_funl(); break;
case 2: do_fun2(); break;
case 3: do_fun3(); break;

What happens if three users on an
UNIX machine simultaneously run
this program with different values
of a?

CS 3204: Operating Systems

Processes Sharing a Program

Shared Program Text

CS 3204: Operating Systems

Modern Process & Thread

s Divide classic process:

» Process is an infrastructure in which execution
takes place — address space + resources

» Threadis a program in execution within a
process context — each thread has its own stack

G_Thread >* "~
R
Proram)

Operating System]

Stack

Stack

Stack

CS 3204: Operating Systems 9

‘ A Process with Multiple Threads
|

Thread (Execution Engine)

Other
Resources

Binary
Program

Process

CS 3204: Operating Systems 10

More on Processes

A Abstraction of processor resource
» Programmer sees an abstract machine environment with
spectrum of resources and a set of resource addresses
(most of the addresses are memory addresses)
» User view is that its program is the only one in execution
» OS perspective is that it runs one program with its resources
for a while, then switches to a different process (context
switching)
= OS maintains
» A process descriptor data structure to implement the process
abstraction
» Identity, owner, things it owns/accesses, etc.
» Tangible element of a process

= Resource descriptors for each resource
CS 3204: Operating Systems 11

Address Space

Process must be able to reference every
resource in its abstract machine

Assign each unit of resource an address
= Most addresses are for memory locations
» Abstract device registers
= Mechanisms to manipulate resources

Addresses used by one process are
inaccessible to other processes

Say that each process has its own address
space

CS 3204: Operating Systems 12

Shared Address Space

» Classic processes sharing program = shared address
space support

= Thread model simplifies the problem

= All threads in a process implicitly use that process’s
address space , but no “unrelated threads” have
access to the address space

» Now trivial for threads to share a program and data

» If you want sharing, encode your work as threads in a
process

» If you do not want sharing, place threads in separate
processes

CS 3204: Operating Systems 13

‘ Process & Address Space

-Data r
Code

Abstract Machine Environment

Address Space

CS 3204: Operating Systems 14

UNIX Processes

Stack / '
- Segment| -~ Files
Text SeDiEZnt
Segment g Other
Resources

Process

UNIX Kernel

CS 3204: Operating Systems 15

‘ UNIX Processes

= Each process has its own address space
» Subdivided into text, data, & stack segment
» a.out file describes the address space

» OS kernel creates descriptor to manage
process

» Process identifier (PID): User handle for the
process (descriptor)

s Try "ps” and “ps -aux” (read man page)

CS 3204: Operating Systems 16

Creating/Destroying Processes

-I UNIX fork () creates a process
= Creates a new address space
= Copies text, data, & stack into new adress

space

= Provides child with access to open files

» UNIX wait () allows a parent to wait for a
child to terminate

s UNIX execea() allows a child to run a new
program

CS 3204: Operating Systems 17

Creating a UNIX Process

int pidvValue;

pidvalue = fork(); /* Creates a child process */
if (pidvalue == 0) {

/* pidvalue is 0 for child, nonzero for parent */

/* The child executes this code concurrently with parent */
childsPlay (..); /* A procedure linked into a.out */
exit (0);

}

/* The parent executes this code concurrently with child */
parentsWork (..);

wait (...);

CS 3204: Operating Systems 18

Child Executes a different Program

int pid;
/* Set up the argv array for the child */

/* Create the child */
if ((pid = fork()) == 0) |
/* The child executes its own absolute program */
execve (childProgram.out, argv, O0);
/* Only return from an execve call if it fails */

printf (“Error in the exec .. terminating the child ..”);

exit (0);

wait (..); /* Parent waits for child to terminate */

CS 3204: Operating Systems 19
Example: Parent
L}
#include <sys/wait.h>
#define NULL 0
int main (void)
{
if (fork() == 0){ /* This is the child process */
execve ("child", NULL, NULL) ;
exit (0); /* Should never get here, terminate */
}
/* Parent code here */
printf ("Process[%d]: Parent in execution ...\n", getpid());
sleep(2);
if (wait (NULL) > 0) /* Child terminating */
printf ("Process[%d]: Parent detects terminating child \n",
getpid());
printf ("Process[%d]: Parent terminating ...\n", getpid());
}
CS 3204: Operating Systems 20

10

Example: Child

int main (void)
{
/* The child process's new program
This program replaces the parent's program */

printf ("Process[%d]: child in execution ...\n", getpid());
sleep(l);
printf ("Process[%d]: child terminating ...\n", getpid());
}
CS 3204: Operating Systems 21

The File Abstraction

File I

.;
A\ 4
Stack

Operating System !
‘ File
Processor Descriptor
Storage
_____ >Executable Device
—————— » Memory

CS 3204: Operating Systems 22

UNIX Files

I
= UNIX and NT try to make every resource
(except CPU and RAM) look like a file

= Then can use a common interface:

open Specifies file name to be used
close Release file descriptor

read Input a block of information
write Output a block of information
1seek Position file for read/write
ioctl Device-specific operations

CS 3204: Operating Systems 23

UNIX File Example

I© #include <stdio.h>

#include <fcntl.h>

int main() {
int inFile, outFile;
char *inFileName = “in_test”;
char *outFileName = “out_test”;
int len;
char c;

inFile = open(inFileName, O_RDONLY) ;
outFile = open (outFileName, O_WRONLY) ;
/* Loop through the input file */
while ((len = read(inFile, &c, 1)) > 0)
write (outFile, &c, 1);
/* Close files and quite */
close (inFile);
close (outFile);

CS 3204: Operating Systems 24

12

‘ Shell Command Line Interpreter
|

Interactive User
Shell Program @

U U

Application
& System
Software

’ OS System Call Interface

CS 3204: Operating Systems

‘ The Shell Strategy
|

o)

% grep first f£3

read keyboard fork aprocess

Process
to execute

C read file

Y

CS 3204: Operating Systems

Bootstrapping

= Computer starts, begins executing a
bootstrap program -- initial process

= Loads OS from the disk (or other device)

= Initial process runs OS, creates other
processes

CS 3204: Operating Systems 27

Initializing a UNIX Machine

/etc/passwd

CS 3204: Operating Systems 28

14

Objects

A recent trend is to replace processes by
objects

Objects are autonomous

Objects communicate with one another using
messages

Popular computing paradigm
Too early to say how important it will be ...

CS 3204: Operating Systems 29

15

