Chapter 1

CS 3204: Introduction

What is an Operating System (OS)?

Definition 1:

 An OS is the <u>interface</u> between the hardware and the software environment, equivalent to an <u>extended</u> or <u>virtual</u> machine

Definition 2:

- An OS is a <u>resource manager</u> provides "resource abstraction"
- In fact, it achieves 1 through 2.
- Therefore, both definitions are applicable at some times.

System Software and the OS interface

from the textbook

Resource Abstraction

- How does the OS "manage resources" ?
 - By providing Resource Abstraction to the other system software and applications
- What is Abstraction ?
 - Abstraction hides the details

- Resource Abstraction
 - hides the "nitty-gritty" details of the underlying resource

Resource Abstraction ... an example

(Consider the C language statement fprintf)

```
fprintf ( fileId , "%d" , var1 )
write ( block , 100 , device , 266 , 9 )

load ( block , 100 , device )
seek ( device , 266 )
out (device , 9 )
```

Multi-level abstraction

Resource Abstraction

- Typical resource abstractions
 - Memory
 - Disk
 - Keyboard
 - Monitor

Resource Sharing

 Managing resources through abstractions implies the ability to 'share resources'

Types of Sharing:

- Space Multiplexed
 - Divided into 2 or more distinct units of resource
 - Example: disk, memory
- Time multiplexed
 - Exclusive control for a short period of time
 - Example: processor

Resource Sharing

- Multiple processes accessing <u>same</u> resource concurrently
- Isolation: only one processor has access at any given time

Terminology

Concurrency

- The simultaneous execution of different programs
- Types of Concurrency

Problems:

- **Physical** multiple processors → Simultaneous access
 - Example: CPU, I/O

- to memory
- **Logical** interleaved execution
 ► Lost updates
 - Example: processes

Multiprogramming

- The concurrent execution of multiple programs on a single processor
- Could be space-multiplexed into memory and timemultiplexed in processors

Multiprogramming

Multiprogramming(2)

- Technique for <u>sharing</u> the CPU among <u>runnable</u> processes
 - Process may be <u>blocked</u> on I/O
 - Process may be <u>blocked</u> waiting for other resource, including the CPU
- While one process is blocked, another might be able to run
- Multiprogramming OS accomplishes CPU sharing "automatically" – scheduling
- Reduces time to run <u>all</u> processes

How Multiprogramming Works

Space-multiplexed Memory

OS Strategies for Providing Services

- Batch
- Time share
- PCs and Workstations
- Process Control & Real-time systems
- Networked
- Distributed
- Small computers

Batch processing systems

- Sequentially loaded set of jobs
- Supported multiprogramming
- Jobs compete for Resources
 - 1st: memory
 - 2nd: processor
 - 3rd: ???
- No "real time" interaction between user and computer
- Current examples include .bat files under DOS Windows, shell files under Unix/Linux

Batch Processing

CS 3204: Operating Systems

Time share (1970s)

- Multiprogramming environment
- Multiple interactive users

- Why time-share (TS) ?
 - To spread the cost of large machine
 - To fully utilize computing power
- TS provides each user with his/her own <u>Virtual</u> <u>Machine</u>

Time share system...

CS 3204: Operating Systems

Time share... ctd.

- TS eventually supported multitasking
 - Multitasking:
 - A time share system that support <u>multiple processes</u> per user, where.
 - A process is a "program in execution
- TS elevated the importance of
 - Need for barriers and safeguards among users and there processes - User/User & Process/Process
 - Memory protection
 - File Protection

Personal Computers (PCs) & Workstations

- Originally
 - Single User
 - Single Processor
- Now
 - Single or Multiple Users
 - Multiprogrammed

PCs Workstations... Evolution

Earlier machines

Too large, too expensive, and too fast for <u>one</u> person

Mini-computers

Smaller versions (like DEC PDP), yet they too grew in size

Micro-computer

Single chip processor

Workstation

- Multiple user
- Multiprogrammed
- Multitasking

PCs & Workstations... Contribution

- Contributed to the growth of
 - Networking
 - Email
 - File server
 - Point and click interface
 - Like that in Mac and Windows

Process Control & Real time Systems

- Process Control Systems (PCS)
 - Single application monitoring one process
 - Example: System to monitor the heat of a liquid
- Real Time Systems (RTS)
 - Tied together Process Control Systems

Real Time Systems... type

Hard RTS

- Had timing constraints that COULD NOT be missed
- Example: Chemical processes, Nuclear power plants, Defense systems

Soft RTS

- Make best effort to accommodate time constraints
- Example: Transaction processing (ATM)

RTS: Tradeoff of generality of operations/functionality to ensure that deadlines can be made

Networks of Computers

- Problem is too large
 - Partition it among machines
- Communication exchange
 - Email
 - File transfers
- Servers
 - File
 - Printer
 - Database
- Provide access to non-local resources
 - LAN, WAN
 - Client / Server

Distributed OS

Wave of the future

Multiple Computers connected by a Network

Small Computers

- PDAs, STBs, embedded systems became commercially significant
- Have an OS, but
 - Not general purpose
 - Limited hardware resources
 - Different kinds of devices
 - Touch screen, no keyboard
 - Graffiti
 - Evolving & leading to new class of Oses
- PalmOS, Pocket PC (WinCE), VxWorks, ...

Summary

from the text book

Examples of Modern OS

- UNIX variants (e.g. Linux) -- have evolved since 1970
- Windows NT/2K -- has evolved since 1989 (much more modern than UNIX
 - Win2K = WinNT, V5
- Research OSes still evolving ...
- Small computer OSes still evolving ...