Chapter 6

* Process Management

=

Last lecture review

= Von Neumann computer comprises of

= CPU (ALU + Control Unit)

= Memory Unit

= Devices

= Bus

Boot-strapping

= Interrupts and interrupt handling

= Trap mechanism (more explanation today)

Fall 1999 : CS 3204 - Arthur 2

Requesting Service from OS

"

= Kernel functions are invoked by “trap

Interrupt
Handler

= System call
= Process traps to OS Interrupt Handler
= Supervisor mode set
= Desired function executed
= User mode set
= Returns to application

Fall 1999 : CS 3204 - Arthur 3

Requesting Svc: System Call

Procedure Call and Message Passing

System Call

Fall 1999 : CS 3204 - Arthur 4

Revisiting the t rap Instruction (H/W)

executeTrap (argument) {
setMode (supervisor) ;
switch (argument) {
case 1: PC = memory([1001]; // Trap handler 1
case 2: PC = memory[1002]; // Trap handler 2

case n: PC = memory[1000+n];// Trap handler n
Yi

= The trap instruction dispatches a trap
handler routine atomically

= Trap handler performs desired processing
= "A trap is a software interrupt”

Fall 1999 : CS 3204 - Arthur 5

Steps in making a system call

‘ Taken from Modern Operating Systems, 2" Ed, Tanenbaum, 2001
Address

Return to caller
Trap o the kernel

5| Put code for read in register
19
a
Increment SP___11
Call read
Push fd

3
2| Push sbuffer
1[Push nbytes

Library
procedure

ead

User program
caling read

User space

3 9

Kernel space 7 8 ["Syscal
(Operating system) B | handler

o

There are 11 steps in making the system call read (fd, buffer, nbytes)

Fall 1999 : CS 3204 - Arthur 6

! Process Management

b

OS organization

Process and
resource
manager

File
Manager
Memory
Manager

Device
Manager

‘ Proccssor(s)l ‘ Main McmoryI ‘ Devices I

Fall 1999 : CS 3204 - Arthur 8

Process Management Tasks

|
= Define & implement the essential characteristics of a
process and thread

= Algorithms to define the behavior

» Data structures to preserve the state of the
execution

= Define what “things” threads in the process can
reference — the address space (most of the “things”
are memory locations)

= Manage the resources used by the processes/threads
= Tools to create/destroy/manipulate processes &

Process management (...ctd)

= Tools to time-multiplex the CPU — Scheduling the
(Chapter 7)

= Tools to allow threads to synchronize the operation
with one another (Chapters 8-9)

» Mechanisms to handle deadlock (Chapter 10)

Fall 1999 : CS 3204 - Arthur 10

threads
Fall 1999 : CS 3204 - Arthur 9
Introduction
|
= Scenario

=« One process running
= One/more process performing I/O
= One/more process waiting on resources

= Most of the complexity stems from the need
to manage multiple processes

Fall 1999 : CS 3204 - Arthur 1

Introduction

Process Manager
= CPU sharing
= Process synchronization
= Deadlock prevention

Fall 1999 : CS 3204 - Arthur 12

Process Manager Overview

Program @

‘ Abstract Computing Environment u

File Deadlock JJ| Process |
Manager Description
Synchronization Process

Device | | Memory
Manager | | Manager

Scheduler I

Resource
Manager
.

I
Devices ”Memory l', J CPU I ‘Other H/WI s

Process components

Program

= defines behavior
= Data

Resources

Process Descriptor
= keeps track of process during execution

Fall 1999 : CS 3204 - Arthur 14

Process Descriptor

FiELD DESCRIPTION

Ifernal proesss ame An internal name of the process, such as an integer or fable index,
used in the operating system code.

State. The process's current state.
Owner A proc
sdantif

for storing 11

ntificd by the owner's internal
1in name). The doscriptor contains a field

Parent proc A puinier 16 the process deseriptor of this process's parent
a

List of child process A pointer to a list of the child processes of this prasess.

descriptors

List of reusable A pointer to a list o 5 1uld by the process. Each
resources xesource type will o1 Ui number of units of the

List of consumahble Bimilar to the reusuble resource list (see Section 6.3.2). 7

e deseriptors A special case of the reusable resource st
Message queue A special case of the consumabla resours list
Protection domain A description of s currently held by the process (see i
Ghapter 14)
£PU status rogister A copy of each of the CPU status registers at the last time the provos

exited the running state.

A\ copy ol each of the CPU general registors at the last tme the process
exited the ranning state

Fall 1999 : CS 3204 - Arthur 15

Process Address Space

= Defines all aspects of process computation
= Program
= Variables
= Address space is generated/defined by
translation

Fall 1999 : CS 3204 - Arthur 16

| Creating an executable program

Separate objects
(=]
Modules

each relative to 0

Relocatabl
I One large program

Modules

Link Editor

Y - (X+Y)

Absolute
Program

Executable
Loader Program

L Maps relative address space to physical
memory location

Relocates modules one behind other

= Relocates addresses of all but first

= Resolves external reference to
library calls and external modules

N

Generates separate
object code modules

Fall 1999 : CS 3204 - Arthur 17

Basic Memory Hierarchy

Fastest ‘r &

My

; Ry Cache memory

Primary Memory, M,

Secondary Memory, M,

Access Speed

Slowest

Fall 1999 : CS 3204 - Arthur 18

Basic Memory Hierarchy...

= At any point in the same program, element can be in

= Secondary memory Ms
= Primary memory Mp
= Registers Mr

= Consistency is a Problem
» Ms#Mp#Mg (code vs data)
= When does one make them consistent ?
= How?

Fall 1999 : CS 3204 - Arthur 19

Consistency Problem

= Scheduler switching out processes — Context Switch
= Is Instruction a Problem ???

= NO

= Instructions are never modified

= Separate Instruction and Data space

= Therefore, Mg; = Mp; = Ms;

How can an instruction be in a
register ?

Fall 1999 : CS 3204 - Arthur 20

Consistency Problem...

= Is Data a Problem ???
= YES
= Variable temporarily stored in register has value added to it
= Therefore, Mg; # Mp;

= On context switch, all registers are saved
= Therefore, current state is saved

Fall 1999 : CS 3204 - Arthur 21

Sample Scenario...

|
= Suppose ‘MOV X Y’ instruction is executed

= DMp, = Ms,

= On context switch, is all of a process’ memory
flushed to Ms?

= No, only on page swap
= Hence, envprocess = (Mr +Ms) + (...)

= Note:
= Flushing of memory frees it up for incoming process
=> Page Swap

Fall 1999 : CS 3204 - Arthur 22

Process States

= Focus on Resource
Management & Process
Management Running

Done

request

= Recall also that part of the ERQRRRD
process environment is its Start
state

Blocked Ready

State Transition Diagram

Fall 1999 : CS 3204 - Arthur 23

Process States...

When process enters ‘Ready’ state, it must
compete for CPU. Memory has already
been allocated

Running

Process has CPU Done

request

Process requests resource that is request g . @
immediately available >NO blocking

Process requests resource that is NOT yet Blocked @ Ready
available

State Transition Diagram
Resource allocated,

memory re-allocated?

OIECIEORONCS.

Fall 1999 : CS 3204 - Arthur 24

| Resources & Resource Manager
| |
= 2 types of Resources » Each Resource R has a Resource Descriptor associated
= Reusable (Memory) with it (similar to the process)
= Consumable (Input/Time slice) => there is a "Status” for that Resource, and
=> a Resource Manager to manage it

Request rais Ur a nESUUILY DESLLIPLOL

Resource Descriptor

FIELD DESCRIPTION
Ill Internal resource | An internal name for the resource used by the operating system code.
@ /dev/

S | ev/...

g - ———— Total units - The nr\lmber of uljn!s of (}isrresaun:e lyper i:tjxf!lgured into the system. 6
% Available units ‘The number of units currently available. 3
Process requesting resource unit(s) R Units of Resource R List of available | The set of available units of this resource type that are available for use by
> Getit, or units processes. AB,C
e List of blocked ‘The list of processes that have a pending request for units of this resource
=> 5
- Block Stay in Queue processes | type. Only if * = 0
Fall 1999 : CS 3204 - Arthur 25 Fall 1999 : CS 3204 - Arthur 26

Process Hierarchy Creating Processes

= Parent Process needs ability to
= Block child
= Activate child
= Destroy child
= Allocate resources to child

i 2) = True for User processes spawning child
= True for OS spawning init, getty, etc.
Process hierarchy a natural,

if fork/exec commands exist

= Conceptually, this is the way in which we would like
to view it

= Root controls all processes i.e. Parent

Fall 1999 : CS 3204 - Arthur 27 Fall 1999 : CS 3204 - Arthur 28

UNIX fork command | Cooperating Processes

|
Pi
= Forkunix 9 Eroe () (proe B (
= Shares text

X, y: int while{TRUE] { while(TRUE) (
= Shares memory Cecmpute saction A13;

¢ Proc A retrieve(x);
= Has its own address space { ref x & y update (x): Coompute seszion BIY;
- Cannotl communicate with parent by referring variable { Proc B Ceompute section A2); wdete(y);
stored in code ref x &y retrieve(y) ; Ceonputs section B2Y;
Fork “A”))
= Earlier definition: Forkconway Fork “B”))

= Shares text

» Shares resources Now processes A & B, share address space & can

= Shares address space communicate thru declared variables
= Process can communicate thru variables declared in code Problem 2?22

A can write 2 times before B reads

Fall 1999 : CS 3204 - Arthur 29

Fall 1999 : CS 3204 - Arthur 30

Synchronizing Access to Shared Variables

Fork, Join & Quit - Conway

= In addition to the “Fork(proc)” command, Conway
also defined system calls to support process
synchronization

= Join (count)

= Un-interruptable
Decrement count;

if count = 0 then Quit, else Continue
[QUIt

= Terminate process

Fall 1999 : CS 3204 - Arthur 32

Prog
» Shared address space allows
communication through declared %,y ¢ int
variables automatically [Porc A
ref x &y
. [Proc B
= How then, can we synchronize access ref x &y
to them? Fork "A”
Fork “B”
» Need Sychronization Primitives
=> JOIN & QUIT
Fall 1999 : CS 3204 - Arthur 31
Fork, Join, Quit example
LO: count = 2;
<compute Al>;
write(x);
FORK(L2) ; <AL>
<compute AZ>; Cnt=0 W(X) __________
Ll: JOIN(count): r(y) R(x)
<Bl> <A2>
read(y): W(Y)
eeyy:. . - 4N T
R(Y) <B2>
L2: read(x);
r(y,
<compute R1>;:
2 ‘Code Repeats
write(y): ! Cnt €2
FORR(L3) ; <Al>
goto Li: w(x)
L3: <compute B2>;
goto LO;
Fall 1999 : CS 3204 - Arthur 33

A Simple Parent Program (Revisit)

fHinclude <sys/wait.h>

#detfine NULL [

int main (void){
if (fork() = = 0){ /* This ic the child process */
execve ("child" NULL,NULL) ;
exit(0); /* Should never get here, terminate */
3
/* Parent code here */
printf("Proccss[%d]: Parent in execution ...\n", getpid()):
sleep(2);
1f (wait(NULL) > 0) /* Child terminating */
printf("Process[%d]: Parent detects terminating child \a",
getpid()):

printf("Process(%d): Parent terminating ...\n", getpid()):

Fall 1999 : CS 3204 - Arthur 34

Spawning A Child Different From Parent

= Suppose we wish to spawn a child that is different

from the parent
fork

execve (..)
s OS> init = getty = shell

/ shell

getty

1| —

0s

Fall 1999 : CS 3204 - Arthur 35

Factoring in additional Control Complexities

= Recall:
= A parent process can suspend a child process

= Therefore, if a child is in run state and goes to ready
(time slice up), and the parent runs and decides to
suspend the child, then how do we reflect this in the
process state diagram ???

= We need 2 more states
= Ready suspended
= Blocked suspended

Fall 1999 : CS 3204 - Arthur 36

Process State diagram reflecting Control

Running
Done
RRAUSEE - Not Blocked
* - Suspended
Start Schedule - No memory
suspend
activate
- Not blocked ctive readyuspended
- Not suspended Allocate Allocate
- Has memory suspend - Blocked

** - Suspended
blockedActive blockedsuspended -
_ Blocked No memory
- Not suspended
- No memory

Fall 1999 : CS 3204 - Arthur

Give it a thought...

Why can a process NOT go from
‘Ready Active’ to ‘Blocked Active’
or ‘Blocked Suspended’ ?

Fall 1999 : CS 3204 - Arthur

