Chapter 2

!'_ Using the Operating system

Last lecture review

= Resources

» Resource abstraction

= Resource sharing/isolation
= Terminology

» Multiprogramming

= Multitasking

=« Concurrency

CS 3204: Operating Systems

Last lecture review... ctd.

s Different OS strategies
» batch
» timesharing
= personal computers
» real time systems
» Network of computers

CS 3204: Operating Systems

!'_ Chapter 2: Using the OS

Resource Descriptors

= The OS implements Abstraction of each of this

» Unit of Computation is a ‘process’
= Unit of information storage is a file’

= For each resource abstraction (file, memory,
processor), OS maintains a resource descriptor

= Resource descriptor:
» Identify resources

= Current state
= What process it is associated with, if it is allocated

= Number and identity of available units

CS 3204: Operating Systems

Resource Descriptors...

= File descriptor:
=« File name
= File type (Sequential, Indexed, ...)
= Owner
« State (Open, Closed)
» Extents (mapping to the physical storage)

= Process descriptor
= Object program (Program text)
« Data segment
= Process Status Word (PSW) — executing, waiting, ready
= Resources acquired

CS 3204: Operating Systems

Process & Process Descriptor

Contents of a descriptor maps directly to the Abstract Machine
provided by the OS

Static variables

FIGURE 2.2

A Process

Code

S. -ﬁmw -

F Resourcee ﬁa '

PC, status, _
Files, etc.

exec time priority

Interface provided by OS

CS 3204: Operating Systems 7

Sequential Operation

Trace for P1

Trace for P3

Distinct race for P2
execution paths ; \
=> PC? Pl
T

Shared Program Text

Frocess |

Process 2

CS 3204:

Process 3

Operating Systems

One Program / Multiple Instantiations

Note:

Each Process has its
own descriptor
- text (shared), data...

Only one process
active at a time
(context switching)

Process

3 units of computations:

s Process
= [hread
" Ob_]ECt

Process: ‘heavy-weight’ process
= OS overhead to create and maintain descriptor is expensive

Thread: “light-weight” process
» OS maintains minimal internal state information

Objects: ‘heavy-weight’ process
= Instantiation of a class

CS 3204: Operating Systems

UNIX Processes

e Dynamically allocated variables

e Runtime stack _
Tape drive,

memory

UNIX Processes

Abstract Machine Environment

CS 3204: Operating Systems 10

Thread

Thread: light-weight process
» OS maintains minimal internal state information

Usually instantiated from a process

Each thread has its OWN unique descriptor
= Data, Thread Status Word (TSW)

SHARES with the parent process (and other threads)
= Program text
= Resources
= Parent process data segment

CS 3204: Operating Systems

11

Thread

L FIGURE 2.5 Unique for each thread

A Process and a Family of Threads

Minimal info

&v\\ \94.«7-%-
e

=> Light-weight

Each thread is
sharing/executing the
EXACT same code

| Thread Status . B
L m&-ﬁ e I s

ﬂ’*m -c..« }M%’ SRR

.:.< i M; mﬁxﬁg s s i ﬁ‘" &n,;a_-c\ ooooo :f‘{

| Program .

| i -

- Data - o e

- :ﬁ: SR i
e 5 i

- - \s._:o Resou i;C & .

;_’2§ PI’OCL"H ‘)tatuf-} i e R B

R T ST

Heavyweight Pmccsr

Shared componeV

Only 1 copy of
descriptor in OS

CS 3204: Operating Systems

Threads... example

Multiple lightweight processes; one resource allocated

SRIGIRE 2 => Only one physical resource has to be
Using Threads maintained by OS

=> Less OS overhead, better response time
Application —\‘

Manipulated by
individual threads

Window Threads

Each thread manipulates part of
the physical screen, i.e. a window

Windows

Single resource ———> Physical Screen

Threads share access to physical screen
- Screen resource allocated to heavyweight process

CS 3204: Operating Systems 13

Objects

= Objects:
= Derived from SIMULA '67
= Defined by classes
= Autonomous

n Classes
= Abstract Data Types (ADT)
= Private variables

= An instantiation of a class is an Object

CS 3204: Operating Systems

14

Objects

Objects are heavy-weight processes
= have full descriptors

Object communicate via Message passing

OOP:
= Appeals to intuition

= Only recently viable
» Overhead of instantiation and communication

CS 3204: Operating Systems

15

Computational Environment

= When OS is started up

= Machine abstraction created
» Hides hardware from User and Application

= Instantiates processes that serve as the user interface or “Shell”
= Shell (UI) instantiates user processes

= Consider UNIX:
UNIX — getty —— shell — user process

= What are the advantages & disadvantages of so many processes
just to execute a program ?

CS 3204: Operating Systems 16

Advantages & Disadvantages

= Advantages...

Each process (UNIX, getty, shell, ...) has its own ‘protected’ execution
environment

» If child process fails from fatal errors, no (minimal) impact on
parent process

= Disadvantages...
OS overhead in

= Maintaining process status
= Context switching

CS 3204: Operating Systems 17

Process Creation — UNIX fork()

Creates a child process that is a ‘Thread’

Child process is duplicate (initially) of the parent process —
except for the process id

Shares access to all resources allocated at the time of
instantiation and Text

Has duplicate copy of data space BUT is its own copy and it can
modify only its own copy

If a child Process requests / receives a resource,
does the parent or other children have access to
it ?

CS 3204: Operating Systems 18

Process creation - fork()... example

int pidValue;

pidvalue = fork(); /* creates a child process */
If (pidvValue == 0) {
/* pidValue is ZERO for child, nonzero for parent */
/* The child executes this code concurrently with Parent */
childsPlay(..); /* A locally-liked procedure * /
exit (0); /* Terminate the child * /
}
/* The Parent executes this code concurrently with the child */
wait (..); /* Parent waits for Child’s to terminate */
UNIX process creation : fork() facility
CS 3204: Operating Systems 19

Process creation — Unix fork()...

Child/Parent code executed based on the pid value in “local” data
space
= For parent process, pid value returned is that of the cA/i/ld (non-zero)
= For child process, pid value returned is O

pidvalue returned to parent process is non-Zero

Therefore, fork() creates a new LW process

Parent process (HW)
Q fork()
Q Child process (LW)

Initial process

CS 3204: Operating Systems 20

Process Creation — Unix exec()

s Turns LW process into autonomous HW process

a fork()
= Creates new process

s exec()
= Brings in new program to be executed by that process

= New text, data, stack, resources, PSW, etc.
BUT using same (expanded) process descriptor entries

In effect, the “exec’ed” code overlays “exec’ing” code

CS 3204: Operating Systems 21

Process creation — exec()... example

int pid;
/* Setup the argv array for the child */
if ((pid = fork()) == 0) { /* Create a child */
/* The child process executes changes to its own program */
execve (new_program.out , argv , 0);
/*0Only return from an execve call if it fails */
printf (“Error in execve”);
exit (0); /* Terminate the child */
}
/* Parent executes this code */
wait (..); /* Parent waits for Child’s to terminate */
UNIX process creation: exec() facility
CS 3204: Operating Systems 22

