! File Systems

Long-term Information Storage

1. Must store large amounts of data

2. Information stored must survive the
termination of the process using it

3. Multiple processes must be able to

access the information concurrently

CS 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002

File Naming

File Structure

Extension Meaning

file.bak Backup file

file.c C source program

file.gif Compuserve Graphical Interchange Format image
file.hip Help file

file.html World Wide Web HyperText Markup Language document
file.jpg Still picture encoded with the JPEG standard

file.mp3 Music encoded in MPEG layer 3 audio format
file.mpg Movie encoded with the MPEG standard

file.o Object file (compiler output, not yet linked)
file.pdf Portable Document Format file

file.ps PostScript file

file.tex Input for the TEX formatting program
file.txt General text file

file.zip Compressed archive

Typical file extensions.

CS 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002

1Byt 1 Record
e

[[cat Jrcow T oo]| [[coat][tion [owt]| [Pony]| Rat [worm]]

A

= Three kinds of files
= byte sequence
= record sequence

= tree

CS 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002

File Types

. Modie
T rame
Header
\
M \ Date
H Objoct \ or
£ mode \ o
\ Protecton
Sizo
1 Header
Text
Object
odule
Data Hoadr
Rolocation
bis
Objoct
modie
Symbol &
e
@)

(a) An executable file (b) An archive

CS 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002

File Access
|

= Sequential access

= read all bytes/records from the beginning

= cannot jump around, could rewind or back up
= convenient when medium was mag tape

= Random access
= bytes/records read in any order
= essential for data base systems
= read can be ...
= move file marker (seek), then read or ...
» read and then move file marker

CS 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002

File Attributes

Attribute | Meaning
Protection | Who can access the file and in what way
Password | Password needed to access the file
Creator |_ID of the person who created the file
Owner |"Current owner
Read-only flag |0 for read/write; 1 for read only
Hidden flag |0 for normal; 1 for do not display in listings
System flag |0 for normal files; 1 for system file
Archive flag |0 for has been backed up; 1 for needs to be backed up
ASCll/binary flag |0 for ASCI file; 1 for binary file
Random access flag | 0 for sequential access only; 1 for random access
Temporary flag |0 for normal; 1 for delete file on process exit
[Lock flags |0 for unlocked; nonzero for locked
Record length | Number of bytes in a record
Key position | Offset of the key within each record
Key length | Number of bytes in the key field
Creation time | Date and time the file was created
Time of last access | Date and time the file was last accessed
Time of last change | Date and time the file has last changed
Current size | Number of bytes in the file
Maximum size | Number of bytes the file may grow to
Possible,file, attributss
December 10, 2002 © Mir Faroog Ali, 2002 7

File Operations

1. Create 7. Append

2. Delete s. Seek

3. Open o. Get attributes
4. Close 10. Set Attributes

5. Read 11. Rename
6. Write

CS 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002 8

An Example Program Using File System Calls (1/2)

/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fentl.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argv[]); /* ANSI prototype */
#define BUF _SIZE 4096 /* use a buffer size of 4096 bytes */
#define OUTPUT_MODE 0700 /* protection bits for output file */

int main(int argc, char *argv[])

int in_fd, out_fd, rd_count, wt_count;
char buffer[BUF _SIZE];

if (arge !=3) exit(1); /* syntax error if argc is not 3 */

CS 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002 9

An Example Program Using File System Calls (2/2)

/* Open the input file and create the output file */
in_fd = open(argv[1], O_RDONLY); /* open the source file */

if (in_fd < 0) exit(2); /* if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT _MODE); /* create the destination file */
if (out_fd < 0) exit(3); /* if it cannot be created, exit */

/* Copy loop */
while (TRUE) {
rd__count = read(in_fd, buffer, BUF _SIZE); /> read a block of data */

if (rd_count <= 0) break; /* if end of file or error, exit loop */
wt__count = write(out _fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit(4); /* wt_count <= 0 is an error */

}

/* Close the files */
close(in_fd);
close(out_fd);

/* no error on last read */

exit(5); /* error on last read */

CS 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002 10

Memory-Mapped Files

Program Program
text text

Data Data xyz

(@) (b)

(a) Segmented process before mapping files into its
address space

(b) Process after mapping
existing file abcinto one segment

creating new segment for xyz

CS 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002 11

Dir ries: Single-Level Directory Systems

. Root directory
AH®E©

= A single level directory system
= contains 4 files
= owned by 3 different people, A, B, and C

CS 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002 12

Two-level Directory Systems

<—Root directory

Letters indicate owners of the directories and
files

CS 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002 13

Hierarchical Directory Systems

<—Root directory

User subdirectories

©) (©) (©) (6) ~ usertile

A hierarchical directory system

CS 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002 14

| Path Names

(o J— Aot droctoy

A UNIX directory tree

CS 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002 15

Directory Operations

1. Create s. Readdir
2. Delete 6. Rename
3. Opendir 7. Link

4. Closedir 8. Unlink

CS 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002 16

File System Implementation

Entire disk

| Il A{ - Tml\‘\l‘ |

Partition table

| Boot block I Super block| Free space mgmt I I-nodes | Root dir | Files and directories

A possible file system layout

CS 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002 17

Implementing Files (1)

File A File C File E File G
(4 blocks) (6 blocks) (12 blocks) (3 blocks)

File B File D File F

(3 blocks) (5 blocks) (6 blocks)
(a)
(File A) (File C) (File E) (File G)
EEEENNSENSENSEEEEENSENSENEENNNNEEEEEEEEE|
File B 5 Free blocks 6 Free blocks

(b)

(a) Contiguous allocation of disk space for 7 files
(b) State of the disk after files D and £ have been

CS 3204: Operating Systems, Fall 2002
rﬂmﬁ}:\/ﬁdot}z © Mir Farooq Ali, 2002 18

Implementing Files (2)

File A

File File File File File
block block block block block
0 1 2 3 4

7 2 10 12

Physical 4
block
File B

File File File File
block block block block
0 1 2 3

3 1 14

Physical 6
block

Storing a file as a linked list of disk blocks

CS 3204: Operating Systems, Fall 2002

Implementing Files (3)

I block

0

1

2 10

3 11

4 7 |<— File A starts here
5

6 3 |«— File B starts here
7 2

8

9
10 12
1 14
12 -1

13

14 1

15 [=<— Unused block

Linked list allocation using a file allocation table in RAM

CS 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002 20

December 10, 2002 © Mir Faroog Ali, 2002 19
Implementing Files (4)
File Attributes
Address of disk block 0 —
Address of disk block 1 —
Address of disk block 2 —
Address of disk block 3 e
Address of disk block 4 E——
Address of disk block 5 f—
Address of disk block 6 E—
Address of disk block 7 f—
Address of block of pointers
Disk bk?ck
containing
additional
disk addresses
An example i-n
e CSa3204:pOpSat\'ng Syg(rr:\ls,eFaH 2002 ”

December 10, 2002 © Mir Farooq Ali, 2002

Implementing Directories (1)

games ! attributes games /I:l
mail attributes mail —/"I:l
news attributes news -\I:]

work attributes work

(a) (b) lj Data structure
containing the

attributes

(a) A simple directory
fixed size entries
disk addresses and attributes in directory entry
(b) Directory in whicp each entry just rgfers to an i-node

S 3204: Operating Systems, Fall 200!
December 10, 2002 © Mir Farooq Ali, 2002 22

~

Imblementina Directories (2

File 1 entry length Pointer to file 1's name ‘ Entry
for one
File 1 attributes. File 1 attributes. J file
Entry
forone 4 |_P_| T [© [1 Pointer to file 2's name
fle e et
3 T B File 2 attributes
. t 1R Pointer to file 3's name
File 2 ontry longth

File 3 attributes
File 2 attributes

2 I I
N G O
T ®] L L L
File 3 entry length e c t -
b [v | d |9
File 3 attributes T T &>
flofol® e lrlslo
P I
[I o | o
[

Heap

= Two ways of handling long file names in directory

= (@) In-line
- (b) In a heapcs 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002

23

Shared Files (1)

. Root directory

Shared file

File system containing a shared file

CS 3204: Operating Systems, Fall 2002

December 10, 2002 © Mir Farooq Ali, 2002 24

Shared Files (2)

C's directory B's directory C's directory B's directory

Owner=C Owner = C Owner = C
Count =1 Count=2 Count =1
(a) (b) (c)

(a) Situation prior to linking
(b) After the link is created
(c) After the orits;inal owner removes the file

3204: Operating Systems, Fall 2002

December 10, 2002 © Mir Farooq Ali, 2002 25

| Disk structure

Totation

| arm assembly

CS 3204: Operating Systems, Fall 2002

Disk Space Management (1)

1000 ————em——e———e———a — 1000
Disk space utilization %

T 800 80 §
8 g
o =14
X 600 -{e0 55
2 ©
® -
5 400 {40 g&
8 k]

200 |- 20 ©

Data rate ~
0 4 Py | | 1 0

0 128 256 512 1K 2K 4K 8K 16K 0

= Dark line (left hand scale) gives data rate of a disk
= Dotted line (right hand scale) gives disk space efficiency
= All files 2KB

CS 3204: Operating Systems, Fall 2002

December 10, 2002 © Mir Faroog Ali, 2002 27

1.

2.
3.

| Disk Space Management (3)
1

Disk
Main
memory

ACRO_N0_

Almost-full block of pointers to free disk blocks in RAM

= three blocks of pointers on disk
Result of freeing a 3-block file

Alternative strategy for handling 3 free blocks
= - shaded entries are pointers to free disk blocks

CS 3204: Operating Systems, Fall 2002

December 10, 2002 © Mir Farooq Ali, 2002 29

December 10, 2002 © Mir Farooq Ali, 2002 26
Free disk blocks: 16, 17, 18
42 20 ~ 8 1001101101101100
136 162 234 0110101111011
210 612 897 1010110110110110
97 342 422 0110110110111011
41 214 140 1110111011011
63 160 223 1011010100011
21 664 223 0000101101011
48 216 160 1011101010111
262 320 126 1100100011101
310 180 142 0111011011101
516 482 141 1101111101110111
A1 KB disk block can hold 256 Abit map
32-blt disk block numbers
@ ()
(a) Storing the free list on a linked list
(b) A bit map 350 Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002 28
Open file table Quota table
Attributes Soft block limit
disk addresses Hard block limit
User=8 Current # of blocks
Quota pointer — # Block warnings left | [QU012
record
Soft file limit for user 8
Hard file limit
Current # of files
od ¥ # File warnings left
. 7 .
Quotas for keeping track of each user’s disk use
CS 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002 30

File System Performance (1)

Hash table Front (LRU) Rear (MRU)
TSN N
*

The block cache data structures

CS 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002 31

J File System Performance (2)

I-nodes are Disk is divided into
located near cylinder groups, each
the start with its own i-nodes
of the disk

Cylinder group

(a) (b)
= I-nodes placed at the start of the disk
= Disk divided into cylinder groups

= each with its own blocks and i-nodes

CS 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002 32

Log-Structured File Systems

=« With CPUs faster, memory larger
= disk caches can also be larger

= increasing number of read requests can come from
cache

= thus, most disk accesses will be writes

= LFS Strategy structures entire disk as a log
= have all writes initially buffered in memory
= periodically write these to the end of the disk log
= when file opened, locate i-node, then find blocks

CS 3204: Operating Systems, Fall 2002
December 10, 2002 © Mir Farooq Ali, 2002 33

