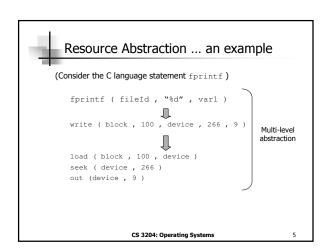
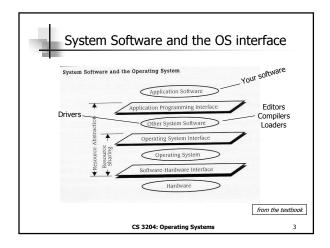
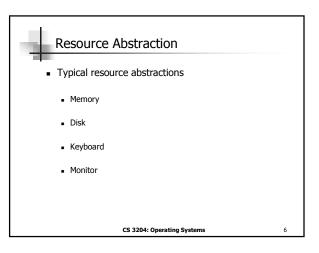
Chapter 1

CS 3204: Introduction

- How does the OS "manage resources"?
 - By providing *Resource Abstraction* to the other system software and applications
- What is Abstraction ?
 - Abstraction hides the details
- Resource Abstraction
 - hides the "nitty-gritty" details of the underlying resource


CS 3204: Operating Systems




What is an Operating System (OS)?

- Definition 1:
 - An OS is the <u>interface</u> between the hardware and the software environment, equivalent to an <u>extended</u> or <u>virtual</u> machine
- Definition 2:
 - An OS is a <u>resource manager</u> provides "resource abstraction"
- In fact, it achieves 1 through 2.
- Therefore, both definitions are applicable at some times.

CS 3204: Operating Systems

Resource Sharing

- Managing resources through abstractions implies the ability to 'share resources'
- Types of Sharing:
 - Space Multiplexed
 - Divided into 2 or more distinct units of resource
 - Example: disk, memory
 - Time multiplexed
 - Exclusive control for a short period of time
 - Example: processor

CS 3204: Operating Systems

OS Strategies for Providing Services

- Batch
- Time share
- PCs and Workstations
- Process Control & Real-time systems
- Networked

CS 3204: Operating Systems

Resource Sharing

- Multiple processes accessing <u>same</u> resource concurrently
- Isolation: only one processor has access at any given time

CS 3204: Operating Systems

Batch processing systems

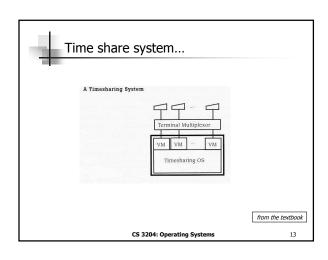
- Sequentially loaded set of jobs
- Supported multiprogramming
- Jobs compete for Resources
 - 1st: memory
 - 2nd: processor
 - 3rd: ???
- No "real time" interaction between user and computer
- Current examples include .bat files under DOS Windows, shell files under Unix/Linux

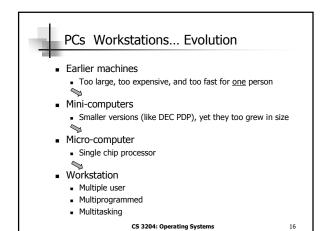
CS 3204: Operating Systems

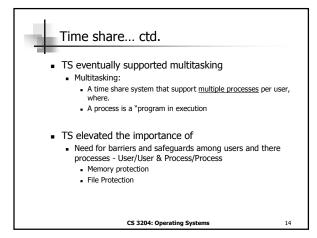
11

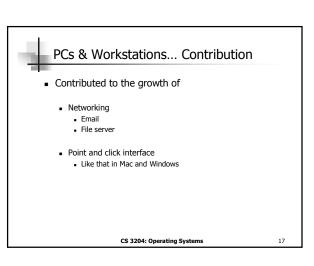
Terminology

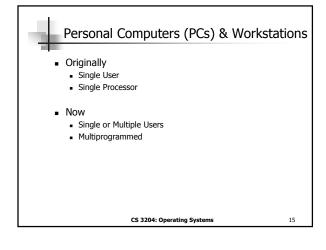
- Concurrency
 - The simultaneous execution of different programs Problems:
 - Types of Concurrency
 - Physical multiple processors → Simultaneous access
 - to memory Example: CPU, I/O → Lost updates
 - Logical interleaved execution · Example: processes
- Multiprogramming
 - The concurrent execution of multiple programs on a single processor
 - Could be space-multiplexed into memory and timemultiplexed in processors

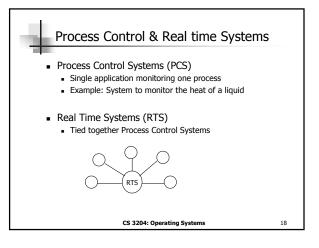

CS 3204: Operating Systems




Time share (1970s)


- Multiprogramming environment
- Multiple interactive users
- Why time-share (TS) ?
 - To spread the cost of large machine
 - To fully utilize computing power
- TS provides each user with his/her own Virtual **Machine**

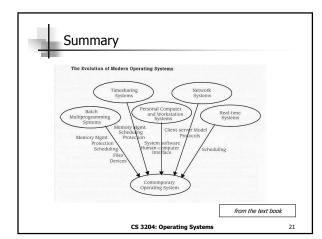

CS 3204: Operating Systems



Real Time Systems... type

- Hard RTS
 - Had timing constraints that COULD NOT be missed
 - Example: Chemical processes, Nuclear power plants, Defense systems
- Soft RTS
 - Make best effort to accommodate time constraints
 - Example: Transaction processing (ATM)

RTS: Tradeoff of generality of operations/functionality to ensure that deadlines can be made


CS 3204: Operating Systems

Networks of Computers

- Problem is too large
 - Partition it among machines
- Communication exchange
 - Email
- File transfers
- Servers
 - File
 - Printer Database
- Provide access to non-local resources
 - LAN, WAN
 - Client / Server

CS 3204: Operating Systems

