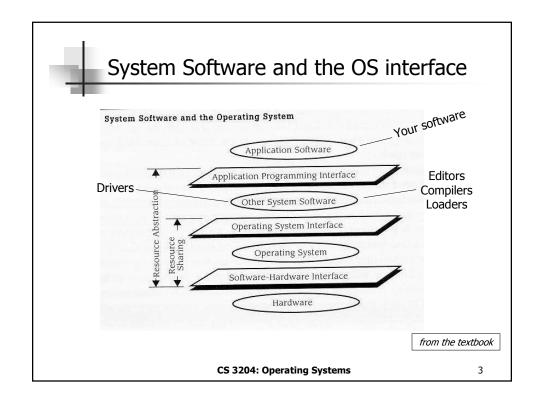
Chapter 1


CS 3204: Introduction

What is an Operating System (OS)?

- Definition 1:
 - An OS is the <u>interface</u> between the hardware and the software environment, equivalent to an <u>extended</u> or <u>virtual</u> machine
- Definition 2:
 - An OS is a <u>resource manager</u> provides "resource abstraction"
- In fact, it achieves 1 through 2.
- Therefore, both definitions are applicable at some times.

CS 3204: Operating Systems

Resource Abstraction

- How does the OS "manage resources"?
 - By providing Resource Abstraction to the other system software and applications
- What is Abstraction ?
 - Abstraction hides the details
- Resource Abstraction
 - hides the "nitty-gritty" details of the underlying resource

CS 3204: Operating Systems

Resource Abstraction ... an example

(Consider the C language statement fprintf)

```
fprintf ( fileId , "%d" , var1 )

write ( block , 100 , device , 266 , 9 )

load ( block , 100 , device )
seek ( device , 266 )
out (device , 9 )
```

Multi-level abstraction

CS 3204: Operating Systems

5

Resource Abstraction

- Typical resource abstractions
 - Memory
 - Disk
 - Keyboard
 - Monitor

CS 3204: Operating Systems

Resource Sharing

- Managing resources through abstractions implies the ability to 'share resources'
- Types of Sharing:
 - Space Multiplexed
 - Divided into 2 or more distinct units of resource
 - Example: disk, memory
 - Time multiplexed
 - Exclusive control for a short period of time
 - Example: processor

CS 3204: Operating Systems

7

Resource Sharing

- Multiple processes accessing <u>same</u> resource concurrently
- Isolation: only one processor has access at any given time

CS 3204: Operating Systems

R

Terminology

- Concurrency
 - The simultaneous execution of different programs
 - Types of Concurrency

Problems:

- Physical multiple processors
 Example: CPU, I/O
- Simultaneous access to memory
- = Example: cl 0, 1/0
- **Logical** interleaved execution **Lost** updates
 - Example: processes
- Multiprogramming
 - The concurrent execution of multiple programs on a single processor
 - Could be space-multiplexed into memory and timemultiplexed in processors

CS 3204: Operating Systems

9

OS Strategies for Providing Services

- Batch
- Time share
- PCs and Workstations
- Process Control & Real-time systems
- Networked

CS 3204: Operating Systems

Batch processing systems

- Sequentially loaded set of jobs
- Supported multiprogramming
- Jobs compete for Resources
 - 1st: memory
 - 2nd: processor
 - 3rd: ???
- No "real time" interaction between user and computer
- Current examples include .bat files under DOS Windows, shell files under Unix/Linux

CS 3204: Operating Systems

11

Time share (1970s)

- Multiprogramming environment
- Multiple interactive users
- Why time-share (TS) ?
 - To spread the cost of large machine
 - To fully utilize computing power
- TS provides each user with his/her own <u>Virtual</u> <u>Machine</u>

CS 3204: Operating Systems

Time share system...

from the textbook

CS 3204: Operating Systems

13

Time share... ctd.

- TS eventually supported multitasking
 - Multitasking:
 - A time share system that support <u>multiple processes</u> per user, where.
 - A process is a "program in execution
- TS elevated the importance of
 - Need for barriers and safeguards among users and there processes - User/User & Process/Process
 - Memory protection
 - File Protection

CS 3204: Operating Systems

Personal Computers (PCs) & Workstations

- Originally
 - Single User
 - Single Processor
- Now
 - Single or Multiple Users
 - Multiprogrammed

CS 3204: Operating Systems

15

PCs Workstations... Evolution

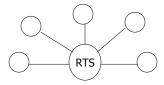
- Earlier machines
 - Too large, too expensive, and too fast for <u>one</u> person
- Mini-computers
 - Smaller versions (like DEC PDP), yet they too grew in size
- Micro-computer
 - Single chip processor

- Workstation
 - Multiple user
 - Multiprogrammed
 - Multitasking

CS 3204: Operating Systems

PCs & Workstations... Contribution

- Contributed to the growth of
 - Networking
 - Email
 - File server
 - Point and click interface
 - Like that in Mac and Windows


CS 3204: Operating Systems

17

Process Control & Real time Systems

- Process Control Systems (PCS)
 - Single application monitoring one process
 - Example: System to monitor the heat of a liquid
- Real Time Systems (RTS)
 - Tied together Process Control Systems

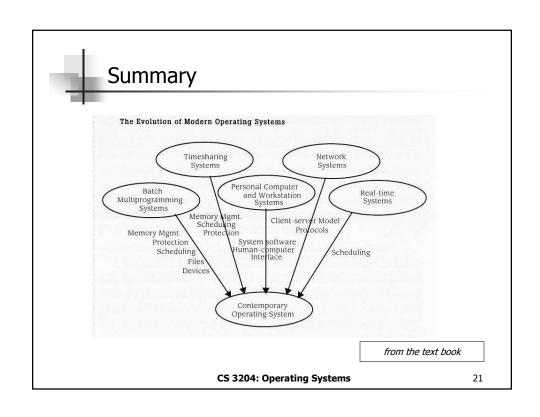
CS 3204: Operating Systems

Real Time Systems... type

- Hard RTS
 - Had timing constraints that COULD NOT be missed
 - Example: Chemical processes, Nuclear power plants, Defense systems
- Soft RTS
 - Make best effort to accommodate time constraints
 - Example: Transaction processing (ATM)

RTS: Tradeoff of generality of operations/functionality to ensure that deadlines can be made

CS 3204: Operating Systems


19

Networks of Computers

- Problem is too large
 - Partition it among machines
- Communication exchange
 - Email
 - File transfers
- Servers
 - File
 - Printer
 - Database
- Provide access to non-local resources
 - LAN, WAN
 - Client / Server

CS 3204: Operating Systems

