Windows 2000 and Linux Memory
!'_ Management



Segmentation with paging: Pentium (1)

= Has 16K independent segments, each holding
up to 1 billion 32-bit words

s Heart of virtual memory
» Local descriptor table (LDT): describes segments
local to one program

» Global descriptor table (GDT): describes system
segments including OS itself
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‘ Segmentation with Paging: Pentium (2)

Bits
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13 1 2
Index
0=GDT/1 =LDT

Privilege level (0-3)

A Pentium selector
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Segmentation with Paging: Pentium (3)

0: 16-Bit segment

1. 32-Bit segment )

O: Liis in bytes
1: Liis in pages |

| 0: Segment is absent from memory

| 1. Segmentis present in memory

Privilege level (0-3)

0 System
| 1: Application

+7 Segment type and protection

%/ PR
Base 24-31 G|D D% Eﬂl'; DPL Type Base 16-23 4
/;‘ ot
Base 0-15 Limit 0-15 0
i : . Relative
) 32 Bits " address

= Pentium code segment descriptor
= Data segments differ slightly
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‘ Segmentation with Paging: Pentium (4)

Selector

Offset
Descriptor
Base address &
Limit
Other fields
Y

32-Bit linear address

Conversion of a (selector, offset) pair to a linear address
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‘ Segmentation with Paging: Pentium (5)

Linear address

Bits 10 10 12
Dir Page Offset
(a)
Page directory Page table Page frame
A
[ 1 I L wes & 1
selected
1024 T
Entries T
; T Offset
Dir
Page
N A |
Directory entry Page table
points to entry points
page table to word
(b)

Mapping of a linear address onto a physical address
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‘ Segmentation with Paging: Pentium (6)

\)Ser programs

Typical uses of
™ the levels

|Level

Protection on the Pentium
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Windows 2000 OS structure

POSIX program

Win32 program

OS/2 program
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Service Y y
pIOGess POSIX subsystem | Win32 subsystem [€— OS/2 subsystem
Y Y 4
System interface (NT DLL.DLL)
L ]
Executive —» System services

I/O mgr , , : ;

Obiject |Process [Memory|Security] Cache| PnP | Power [ Config| LPC | Win32
File sys mgr mgr mgr mgr mgr | mgr mgr | mgr mgr GDI

I%l Kernel X;ﬁ:;

Hardware Abstraction layer (HAL)

Hardware

= Memory Manager is one part of this executive
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‘ Memory Management

= Sophisticated virtual memory (VM) management

= Assumption is that underlying hardware supports

virtual-to-physical address translation, paging, and
other VM features

= The VM manager in 2000 uses a page-based
management scheme with a page size of 4 KB

= VM manager uses 32 bit addresses, so each process
has a 4 GB virtual address space

= Upper 2 GB are identical for each process and lower 2
GB are distinct for each process

= [wo-step memory allocation procedure
1. Reservation a portion of the process’ address space

2. Commitment of the allocation by assigning space in the
OS paging file
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Virtual Address Space

4 GB

Process A

Process B

Process C

2 GB

Process A's Process B's Process C's
private code private code private code
and data and data and data
] ] I
0

Bottom and top
64 KB are invalid

= Virtual address space layout for 3 user processes
= White areas are private per process
= Shaded areas are shared among all processes
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Virtual-Memory Layout

page- page page-
directory directory directory
entry entry
0 o 1023
/ \

/ \

page page

table O table 1023
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‘ Virtual Memory Manager (Cont.)

s The virtual address translation in 2000 uses several data structures.

= Each process has a page directory that contains 1024 page directory
entries of size 4 bytes.

= Each page directory entry points to a page table which contains 1024
page table entries (PTEs) of size 4 bytes.

= Each PTE points to a 4 KB page frame in physical memory.

= A 10-bit integer can represent all the values form 0 to 1023,

therefore, can select any entry in the page directory, or in a page
table.

= This property is used when translating a virtual address pointer to a
bye address in physical memory.

= A page can be in one of six states: valid, zeroed, free standby,
modified and bad.
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‘ Virtual-to-Physical Address Translation

= 10 bits for page directory entry, 10 bits for
page table entry, and 12 bits for byte offset in

page.
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‘ Page File Page-Table Entry

= 5 bits for page protection, 20 bits for page frame address,
4 bits to select a paging file, and 3 bits that describe the
page state. V=20
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‘ Page File Page-Table Entry

Bits 20 3 111111111
;Z/ﬁ//// n
7 Not
Page frame gusecﬁG L|D[A|C t U{W|V
A7
G: Page is global to all processes Wi: Write through (no caching)
L: Large (4-MB) page U: Page is accessible in user mode
D: Page is dirty W: Writing to the page permitted
A: Page has been accessed V: Valid page table entry

A page table entry for a mapped page on the Pentium
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= The /ib.dl/file is mapped into two address spaces at same time

Fundamental Concepts (2)

Backing store on disk
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Mapped regions with their shadow pages on disk
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Memory Management System Calls

Win32 API function

Description

VirtualAlloc Reserve or commit a region

VirtualFree Release or decommit a region

VirtualProtect Change the read/write/execute protection on a region
VirtualQuery Inquire about the status of a region

VirtualLock Make a region memory resident (i.e., disable paging for it)

VirtualUnlock

Make a region pageable in the usual way

CreateFileMapping

Create a file mapping object and (optionally) assign it a name

MapViewOfFile

Map (part of) a file into the address space

UnmapViewOfFile

Remove a mapped file from the address space

OpenFileMapping

Open a previously created file mapping object

The principal Win32 API functions for mapping virtual
memory in Windows 2000
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rogrammer Interface - Memory Management

= Virtual memory:

_ VirtualAlloc reserves or commits virtual
memory.

- VirtualFree decommits or releases the memory.

» These functions enable the application to determine
the virtual address at which the memory is
allocated.

= An application can use memory by memory
mapping a file into its address space.

» Multistage process.

= TWO processes share memory by mapping the same
file into their virtual memory.
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Physical Memory Management (1)

Zero page needed (8)

Page read in (6) N\
( Soft page fault (2)
, Top \ A
Working
sets
Mod- Standby Free Zeroed Bad
ified a page - F?age ! Page RAM
Page | Modified | St |Dealloc(s)| 1St | zero list page
list page page list
writer(4) thread (7)
Bottom 4)( j j
Page evicted from a working set (1) Process exist (3)

The various page lists and the transitions between them
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Physical Memory Management (2)

List headers

| Standby ——

[ Nodiied —

| Free >

14
13
12
11
10

9

N WPk N0

[ Zercred }——> O

Page frame database
Page tables

State Cnt WS Other PT  Next

________ > ]
Clean === "X ' :
Dirty X
Clean l
Active 20 “““'9““"‘
Clean 1
Dirty 7]
Active 4 )
Dirty .
Free X
Free _.j
Zeroed X
Active 6 )
Zeroed l
Active 14 j
Zeroed -

Some of the major fields in the page frame data base for a valid page
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Win2K tools
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Linux Memory Management

= Linux’s physical memory-management system
deals with allocating and freeing pages, groups
of pages, and small blocks of memory.

s It has additional mechanisms for handling
virtual memory, memory mapped into the
address space of running processes.

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002 22



‘ Splitting of Memory in a Buddy Heap

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002

23



Managing Physical Memory

= The page allocator allocates and frees all physical pages; it
can allocate ranges of physically-contiguous pages on
request.

= The allocator uses a buddy-heap algorithm to keep track of
available physical pages.
» Each allocatable memory region is paired with an adjacent
partner.

= Whenever two allocated partner regions are both freed up they
are combined to form a larger region.

» If a small memory request cannot be satisfied by allocating an
existing small free region, then a larger free region will be
subdivided into two partners to satisfy the request.

= Memory allocations in the Linux kernel occur either statically
(drivers reserve a contiguous area of memory during system
boot time) or dynamically (via the page allocator).
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‘ Virtual Memory

= The VM system maintains the address space visible to
each process: It creates pages of virtual memory on
demand, and manages the loading of those pages
from disk or their swapping back out to disk as
required.

= The VM manager maintains two separate views of a
process’s address space:

» A logical view describing instructions concerning the layout of
the address space.
The address space consists of a set of nonoverlapping regions,
each representing a continuous, page-aligned subset of the
address space.

= A physical view of each address space which is stored in the
hardware page tables for the process.

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002 25



‘ Virtual Memory (Cont.)

= Virtual memory regions are characterized by:

= The backing store, which describes from where the
pages for a region come; regions are usually
backed by a file or by nothing (demand-zero
memory)

= The region’s reaction to writes (page sharing or
copy-on-write).

s The kernel creates a new virtual address space

1.When a process runs a new program with the exec
system call

2. Upon creation of a new process by the fork
system call
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‘ Virtual Memory (Cont.)

= On executing a new program, the process is given a
new, completely empty virtual-address space; the
program-loading routines populate the address space
with virtual-memory regions.

= Creating a new process with fork involves creating a
complete copy of the existing process’s virtual address
space.

= The kernel copies the parent process’s VMA descriptors, then
creates a new set of page tables for the child.

= The parent’s page tables are copied directly into the child’s,
with the reference count of each page covered being
incremented.

= After the fork, the parent and child share the same physical
pages of memory in their address spaces.
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‘ Virtual Memory (Cont.)

= The VM paging system relocates pages of memory
from physical memory out to disk when the memory is
needed for something else.

= The VM paging system can be divided into two
sections:

» The pageout-policy algorithm decides which pages
to write out to disk, and when.

» The paging mechanism actually carries out the
transfer, and pages data back into physical memory
as needed.
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‘ Virtual Memory (Cont.)

= [he Linux kernel reserves a constant, architecture-
dependent region of the virtual address space of every
process for its own internal use.

= This kernel virtual-memory area contains two regions:

» A static area that contains page table references to every available
physical page of memory in the system, so that there is a simple
translation from physical to virtual addresses when running kernel
code.

= The reminder of the reserved section is not reserved for any
specific purpose; its page-table entries can be modified to point to
any other areas of memory.

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002 29



‘ Executing and Loading User Programs
= Linux maintains a table of functions for loading
programs; it gives each function the opportunity to try

loading the given file when an exec system call is
made.

= The registration of multiple loader routines allows
Linux to support both the ELF and a.out binary
formats.

= Initially, binary-file pages are mapped into virtual
memory; only when a program tries to access a given
page will a page fault result in that page being loaded
into physical memory.

= An ELF-format binary file consists of a header followed
by several page-aligned sections; the ELF loader works
by reading the header and mapping the sections of the
file into separate regions of virtual memory.
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Memory Layout for ELF Programs

kernel virtual memory T memory invisible to user mode code

stack

!
}

memory-mapped region

memory-mapped region

memory-mapped region

+ the ObrkO pointer
run-time data

uninitialized data
initialized data
program text

forbidden region
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‘ Static and Dynamic Linking

= A program whose necessary library functions are
embedded directly in the program’s executable binary
file is statically linked to its libraries.

= The main disadvantage of static linkage is that every
program generated must contain copies of exactly the
same common system library functions.

s Dynamic linking is more efficient in terms of both
physical memory and disk-space usage because it
loads the system libraries into memory only once.
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