Windows 2000 and Linux Memory
!'_ Management

Segmentation with paging: Pentium (1)

= Has 16K independent segments, each holding
up to 1 billion 32-bit words

s Heart of virtual memory
» Local descriptor table (LDT): describes segments
local to one program

» Global descriptor table (GDT): describes system
segments including OS itself

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002 2

‘ Segmentation with Paging: Pentium (2)

Bits

November 26, 2002

13 1 2
Index
0=GDT/1 =LDT

Privilege level (0-3)

A Pentium selector

CS 3204: Operating Systems, Fall 2002

© Mir Farooq Ali, 2002

Segmentation with Paging: Pentium (3)

0: 16-Bit segment

1. 32-Bit segment)

O: Liis in bytes
1: Liis in pages |

| 0: Segment is absent from memory

| 1. Segmentis present in memory

Privilege level (0-3)

0 System
| 1: Application

+7 Segment type and protection

%/ PR
Base 24-31 G|D D% Eﬂl'; DPL Type Base 16-23 4
/;‘ ot
Base 0-15 Limit 0-15 0
i : . Relative
) 32 Bits " address

= Pentium code segment descriptor
= Data segments differ slightly

CS 3204: Operating Systems, Fall 2002

November 26, 2002

© Mir Farooq Ali, 2002

‘ Segmentation with Paging: Pentium (4)

Selector

Offset
Descriptor
Base address &
Limit
Other fields
Y

32-Bit linear address

Conversion of a (selector, offset) pair to a linear address

November 26, 2002

CS 3204: Operating Systems, Fall 2002
© Mir Farooq Ali, 2002

‘ Segmentation with Paging: Pentium (5)

Linear address

Bits 10 10 12
Dir Page Offset
(a)
Page directory Page table Page frame
A
[1 I L wes & 1
selected
1024 T
Entries T
; T Offset
Dir
Page
N A |
Directory entry Page table
points to entry points
page table to word
(b)

Mapping of a linear address onto a physical address

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002

‘ Segmentation with Paging: Pentium (6)

\)Ser programs

Typical uses of
™ the levels

|Level

Protection on the Pentium

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002

Windows 2000 OS structure

POSIX program

Win32 program

OS/2 program

November 26, 2002

Service Y y
pIOGess POSIX subsystem | Win32 subsystem [€— OS/2 subsystem
Y Y 4
System interface (NT DLL.DLL)
L]
Executive —» System services

I/O mgr , , : ;

Obiject |Process [Memory|Security] Cache| PnP | Power [Config| LPC | Win32
File sys mgr mgr mgr mgr mgr | mgr mgr | mgr mgr GDI

I%l Kernel X;ﬁ:;

Hardware Abstraction layer (HAL)

Hardware

= Memory Manager is one part of this executive

CS 3204: Operating Systems, Fall 2002
© Mir Farooq Ali, 2002

= Executive is architecture independent part of the OS

User mode —

-—— Kernel mode —» <«—

‘ Memory Management

= Sophisticated virtual memory (VM) management

= Assumption is that underlying hardware supports

virtual-to-physical address translation, paging, and
other VM features

= The VM manager in 2000 uses a page-based
management scheme with a page size of 4 KB

= VM manager uses 32 bit addresses, so each process
has a 4 GB virtual address space

= Upper 2 GB are identical for each process and lower 2
GB are distinct for each process

= [wo-step memory allocation procedure
1. Reservation a portion of the process’ address space

2. Commitment of the allocation by assigning space in the
OS paging file

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002 9

Virtual Address Space

4 GB

Process A

Process B

Process C

2 GB

Process A's Process B's Process C's
private code private code private code
and data and data and data
]] I
0

Bottom and top
64 KB are invalid

= Virtual address space layout for 3 user processes
= White areas are private per process
= Shaded areas are shared among all processes

CS 3204: Operating Systems, Fall 2002

November 26, 2002 © Mir Farooq Ali, 2002

10

Virtual-Memory Layout

page- page page-
directory directory directory
entry entry
0 o 1023
/ \

/ \

page page

table O table 1023

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002

11

‘ Virtual Memory Manager (Cont.)

s The virtual address translation in 2000 uses several data structures.

= Each process has a page directory that contains 1024 page directory
entries of size 4 bytes.

= Each page directory entry points to a page table which contains 1024
page table entries (PTEs) of size 4 bytes.

= Each PTE points to a 4 KB page frame in physical memory.

= A 10-bit integer can represent all the values form 0 to 1023,

therefore, can select any entry in the page directory, or in a page
table.

= This property is used when translating a virtual address pointer to a
bye address in physical memory.

= A page can be in one of six states: valid, zeroed, free standby,
modified and bad.

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002 12

‘ Virtual-to-Physical Address Translation

= 10 bits for page directory entry, 10 bits for
page table entry, and 12 bits for byte offset in

page.

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002

13

‘ Page File Page-Table Entry

= 5 bits for page protection, 20 bits for page frame address,
4 bits to select a paging file, and 3 bits that describe the
page state. V=20

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002

14

‘ Page File Page-Table Entry

Bits 20 3 111111111
;Z/ﬁ//// n
7 Not
Page frame gusecﬁG L|D[A|C t U{W|V
A7
G: Page is global to all processes Wi: Write through (no caching)
L: Large (4-MB) page U: Page is accessible in user mode
D: Page is dirty W: Writing to the page permitted
A: Page has been accessed V: Valid page table entry

A page table entry for a mapped page on the Pentium

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002 15

= The /ib.dl/file is mapped into two address spaces at same time

Fundamental Concepts (2)

Backing store on disk

Region {

Process A

Stack

Data

Shared
library

Program

' B!
,,,,,
-d'_"_
————— _—-"‘
________ -
-—"—-—-—-—-
—""---
--""-.—.
=~ -
— —
hhhhh _“.‘-
— —
- i ~ S~
e -~ -~
S S "'-..__.
_‘-""‘"-—. =~ g
—— S
“
-
S
Paging file)
%
<
B
"
.
"-_h-‘-
-
%
%
<
_____________ "
S~
.
Lib.dll e
| ~
. ="
-
_____ —
9
—
-

Mapped regions with their shadow pages on disk

November 26, 2002

CS 3204: Operating Systems, Fall 2002
© Mir Farooq Ali, 2002

Process B

Stack

Data

Shared
library

Program

16

Memory Management System Calls

Win32 API function

Description

VirtualAlloc Reserve or commit a region

VirtualFree Release or decommit a region

VirtualProtect Change the read/write/execute protection on a region
VirtualQuery Inquire about the status of a region

VirtualLock Make a region memory resident (i.e., disable paging for it)

VirtualUnlock

Make a region pageable in the usual way

CreateFileMapping

Create a file mapping object and (optionally) assign it a name

MapViewOfFile

Map (part of) a file into the address space

UnmapViewOfFile

Remove a mapped file from the address space

OpenFileMapping

Open a previously created file mapping object

The principal Win32 API functions for mapping virtual
memory in Windows 2000

November 26, 2002

CS 3204: Operating Systems, Fall 2002
© Mir Farooq Ali, 2002 17

rogrammer Interface - Memory Management

= Virtual memory:

_ VirtualAlloc reserves or commits virtual
memory.

- VirtualFree decommits or releases the memory.

» These functions enable the application to determine
the virtual address at which the memory is
allocated.

= An application can use memory by memory
mapping a file into its address space.

» Multistage process.

= TWO processes share memory by mapping the same
file into their virtual memory.

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002 18

Physical Memory Management (1)

Zero page needed (8)

Page read in (6) N\
(Soft page fault (2)
, Top \ A
Working
sets
Mod- Standby Free Zeroed Bad
ified a page - F?age ! Page RAM
Page | Modified | St |Dealloc(s)| 1St | zero list page
list page page list
writer(4) thread (7)
Bottom 4)(j j
Page evicted from a working set (1) Process exist (3)

The various page lists and the transitions between them

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002 19

Physical Memory Management (2)

List headers

| Standby ——

[Nodiied —

| Free >

14
13
12
11
10

9

N WPk N0

[Zercred }——> O

Page frame database
Page tables

State Cnt WS Other PT Next

________ >]
Clean === "X ' :
Dirty X
Clean l
Active 20 “““'9““"‘
Clean 1
Dirty 7]
Active 4)
Dirty .
Free X
Free _.j
Zeroed X
Active 6)
Zeroed l
Active 14 j
Zeroed -

Some of the major fields in the page frame data base for a valid page

November 26, 2002

CS 3204: Operating Systems, Fall 2002
© Mir Farooq Ali, 2002

20

Win2K tools

e
(& Performance

=10l

“@ Console Window Help

|0 =W B |18l

|J Ackion” Miew Eawvorites “ = = | | | @

Tree i e s | : P
] ol Qv sl ABEl +xe] plels ol=2
|;] Console Root o
o] System Monitor
E-ﬁ Performance Logs and Alerts &
&0
40
. Mo
o
Last | 0,000 Average | 24,426 Minimum | 0,000
Masimum 187,395 Duration | 1:40
Color | Scale | Counter Instance | Parent | Object | Computer
! Page Faultsfsec POWERPHT --- Process YNUTSEDGE
0.00.,, Page File Bvtes POWERPMT --- Process WNUTSEDGE
0.00,,, Virtual Bytes POWERPMT -—- Process: WNUTSEDGE
0,00, ‘Working Set POWERPMT -—- Process WNUTSEDGE

perfmon

November 26, 2002

File: Ciptions

E windows Task Manager I

Wigw Help

=10l xj

Applications I Processes F'

—CPU Usage ——

—CPU Usage Histary

! J| I[

i 1
S EE
e

BTN

-
|| !
"'|"'||"

: Il.JIIIIHIII "I"lfl"""'

—MEM Lsage —

H5E24

—Memary Usage Histary

—Tokals = Physical Memmory (k)
Handles 8516 Total 522544
Threads 456 Arvailable 47264
Processes 46 Swstem Cache 2945197
—Zommit Charge (k) —kernel Memory (k)
Total 345624 Total a1916
Lirnit 1277440 Paged 3208
Feak 413112 honpaged 23708

iF‘ru:u:esses: 46

i-C_F‘LI Usage: £3%

Mem Usage: 345624K | 1277440k 2

Task Manager

CS 3204: Operating Systems, Fall 2002
© Mir Farooq Ali, 2002

21

Linux Memory Management

= Linux’s physical memory-management system
deals with allocating and freeing pages, groups
of pages, and small blocks of memory.

s It has additional mechanisms for handling
virtual memory, memory mapped into the
address space of running processes.

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002 22

‘ Splitting of Memory in a Buddy Heap

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002

23

Managing Physical Memory

= The page allocator allocates and frees all physical pages; it
can allocate ranges of physically-contiguous pages on
request.

= The allocator uses a buddy-heap algorithm to keep track of
available physical pages.
» Each allocatable memory region is paired with an adjacent
partner.

= Whenever two allocated partner regions are both freed up they
are combined to form a larger region.

» If a small memory request cannot be satisfied by allocating an
existing small free region, then a larger free region will be
subdivided into two partners to satisfy the request.

= Memory allocations in the Linux kernel occur either statically
(drivers reserve a contiguous area of memory during system
boot time) or dynamically (via the page allocator).

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002 24

‘ Virtual Memory

= The VM system maintains the address space visible to
each process: It creates pages of virtual memory on
demand, and manages the loading of those pages
from disk or their swapping back out to disk as
required.

= The VM manager maintains two separate views of a
process’s address space:

» A logical view describing instructions concerning the layout of
the address space.
The address space consists of a set of nonoverlapping regions,
each representing a continuous, page-aligned subset of the
address space.

= A physical view of each address space which is stored in the
hardware page tables for the process.

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002 25

‘ Virtual Memory (Cont.)

= Virtual memory regions are characterized by:

= The backing store, which describes from where the
pages for a region come; regions are usually
backed by a file or by nothing (demand-zero
memory)

= The region’s reaction to writes (page sharing or
copy-on-write).

s The kernel creates a new virtual address space

1.When a process runs a new program with the exec
system call

2. Upon creation of a new process by the fork
system call

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002 26

‘ Virtual Memory (Cont.)

= On executing a new program, the process is given a
new, completely empty virtual-address space; the
program-loading routines populate the address space
with virtual-memory regions.

= Creating a new process with fork involves creating a
complete copy of the existing process’s virtual address
space.

= The kernel copies the parent process’s VMA descriptors, then
creates a new set of page tables for the child.

= The parent’s page tables are copied directly into the child’s,
with the reference count of each page covered being
incremented.

= After the fork, the parent and child share the same physical
pages of memory in their address spaces.

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002 27

‘ Virtual Memory (Cont.)

= The VM paging system relocates pages of memory
from physical memory out to disk when the memory is
needed for something else.

= The VM paging system can be divided into two
sections:

» The pageout-policy algorithm decides which pages
to write out to disk, and when.

» The paging mechanism actually carries out the
transfer, and pages data back into physical memory
as needed.

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002 28

‘ Virtual Memory (Cont.)

= [he Linux kernel reserves a constant, architecture-
dependent region of the virtual address space of every
process for its own internal use.

= This kernel virtual-memory area contains two regions:

» A static area that contains page table references to every available
physical page of memory in the system, so that there is a simple
translation from physical to virtual addresses when running kernel
code.

= The reminder of the reserved section is not reserved for any
specific purpose; its page-table entries can be modified to point to
any other areas of memory.

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002 29

‘ Executing and Loading User Programs
= Linux maintains a table of functions for loading
programs; it gives each function the opportunity to try

loading the given file when an exec system call is
made.

= The registration of multiple loader routines allows
Linux to support both the ELF and a.out binary
formats.

= Initially, binary-file pages are mapped into virtual
memory; only when a program tries to access a given
page will a page fault result in that page being loaded
into physical memory.

= An ELF-format binary file consists of a header followed
by several page-aligned sections; the ELF loader works
by reading the header and mapping the sections of the
file into separate regions of virtual memory.

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002 30

Memory Layout for ELF Programs

kernel virtual memory T memory invisible to user mode code

stack

!
}

memory-mapped region

memory-mapped region

memory-mapped region

+ the ObrkO pointer
run-time data

uninitialized data
initialized data
program text

forbidden region

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002

‘ Static and Dynamic Linking

= A program whose necessary library functions are
embedded directly in the program’s executable binary
file is statically linked to its libraries.

= The main disadvantage of static linkage is that every
program generated must contain copies of exactly the
same common system library functions.

s Dynamic linking is more efficient in terms of both
physical memory and disk-space usage because it
loads the system libraries into memory only once.

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002 32

‘ Acknowledgements
1. Silberschatz, et al., Operating System Concepts, 6™ Edition,

John Wiley & Sons, Inc, 2003.

2. Tanenbaum, Andew., Modern Operating Systems, 2™ Edition,
Prentice Hall, 2001.

CS 3204: Operating Systems, Fall 2002
November 26, 2002 © Mir Farooq Ali, 2002 33

