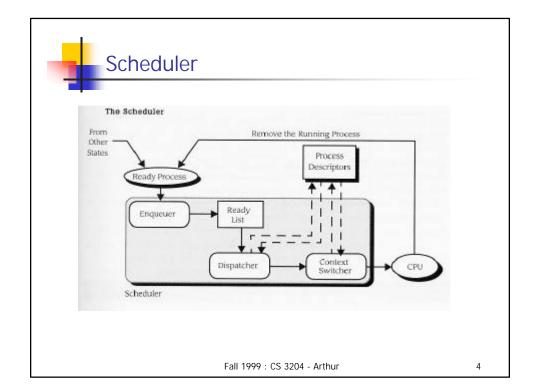
Chapter 7

Process Scheduling

Process Scheduler

- Why do we even <u>need</u> to a process scheduler?
 - In simplest form, CPU must be *shared* by
 - OS
 - Application
 - In reality, [multiprogramming]
 - OS : many separate pieces (processes)
 - Many Applications
- Scheduling [Policy] addresses...
 - When to remove a process from CPU?
 - Which ready process to allocate the CPU to ?

Fall 1999 : CS 3204 - Arthur


Context Switch

- Processes are switched out using <u>Context Switching</u>
- Context Switch:
 - Save pertinent info for current process
 - PC, Register, Status, etc.
 - **Update** PC, Register, Status, etc.
 - with info for process selected to run
- Switching User Process
 - 2 Context switches (CTX)

Process 1 running
CTX
Dispatcher: selects next process
CTX
Process 2 running

Fall 1999 : CS 3204 - Arthur

3

Selection Strategies

- Motivation
 - To "optimize" some aspect of system behavior
- Considerations
 - Priority of process

External : assigned

Internal : aging

Fairness : no starvation

Overall Resource Utilization

...

Fall 1999 : CS 3204 - Arthur

5

Selection Strategies...

- Considerations...
 - Turnaround time
 - Average time / job
 - Throughput
 - Jobs / time unit
 - Response time
 - System availability
 - Deadlines

Fall 1999 : CS 3204 - Arthur

Definition & Terms

- Time Quantum
 - Amount of time between timer interrupts
 - Also called Time Slice
- Service Time τ (P_i)
 - Amount of time process needs to be in Running state (acquired CPU) before it is completed
- Wait Time W (P_i)
 - Time a process spends waiting in the Ready state before its first transition to the Running state

Fall 1999 : CS 3204 - Arthur

7

Definition & Terms...

- Turnaround Time T (P_i)
 - Amount of time between moment process first enters Ready state and the moment the process exits Running state for the last time (completed)
- Service time, Wait time & Turnaround time are measurable metrics used to compare scheduling algorithms

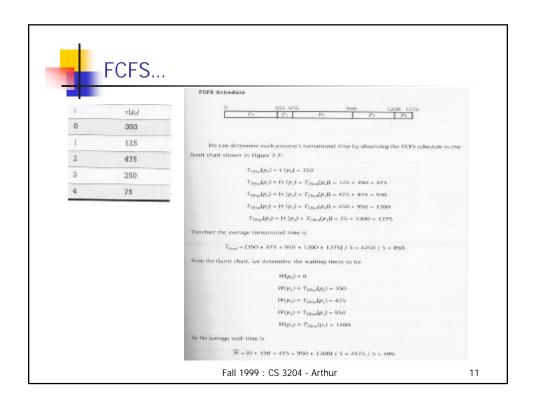
Fall 1999 : CS 3204 - Arthur

Classes of Scheduling Algorithms

- 2 major classes
 - Non-preemptive
 - Run to completion
 - Preemptive
 - Process with highest priority always gets CPU

Recall: Several ways to establish priority

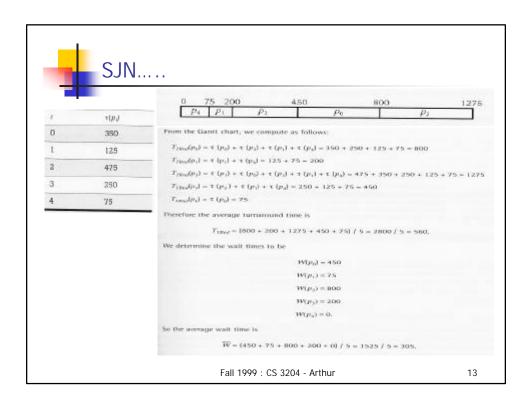
Fall 1999 : CS 3204 - Arthur

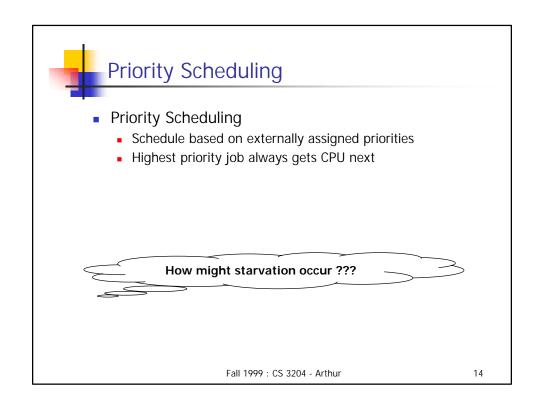

9

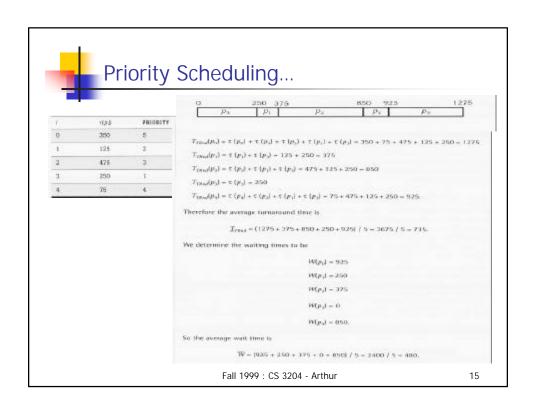
Non-preemptive Strategies - FCFS

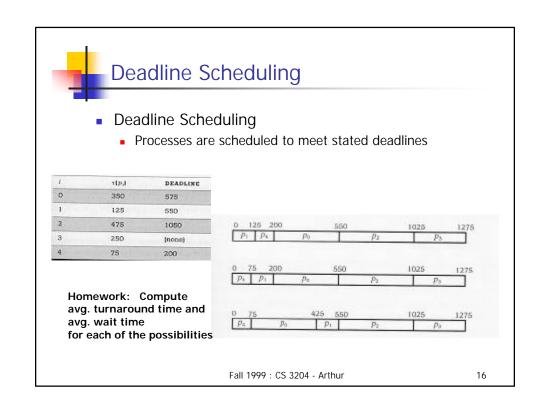
- FCFS First-Come, First-Serve
 - Processes are assigned the CPU in the order they arrive
 - FIFO structure (queue)
 - Ignores service time and any other criteria that may influence performance w.r.t.
 - Turnaround time
 - Waiting time

Fall 1999 : CS 3204 - Arthur




Non-preemptive Strategies - SJN


- SJN Shortest Job Next
 - Assumes service time known a priori
 - Realistically, can make estimated based on
 - Past experience history
 - Size of input
 - User estimate
 - Algorithm chooses a next process that one which has shortest service time
 - => Minimizes average waiting time
 - => Maximizes throughput
 - => Can penalize processes with high service time



Fall 1999 : CS 3204 - Arthur

Preemptive Strategies

- Highest priority among all processes in Ready state is allocated CPU
- If a lower priority process is executing when a higher priority process arrives in Ready queue
 - => Lower priority process will be interrupted and replaced with higher priority process
- Depending on scheduling algorithm
 - Provides quick response to higher priority process
 - Provides a fair share of CPU for all processes (esp. when Round Robin is used)

Fall 1999 : CS 3204 - Arthur

17

Preemptive Strategies - SJN

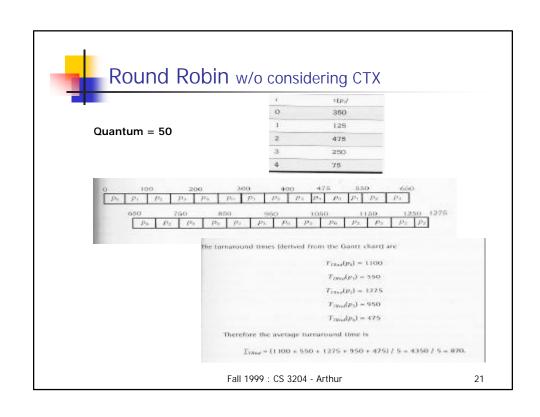
- SJN Shortest Job Next
 - [Initial] selection based on shortest service time
 - When new process arrives in Ready queue, need only compare τ(P_{active}) with τ(P_{new})
 - If $\tau(P_{active}) <= \tau(P_{new})$, nothing happens
 - If $\tau(P_{active}) > \tau(P_{active})$, interrupt, CTX
 - => Service time used to determine priorities

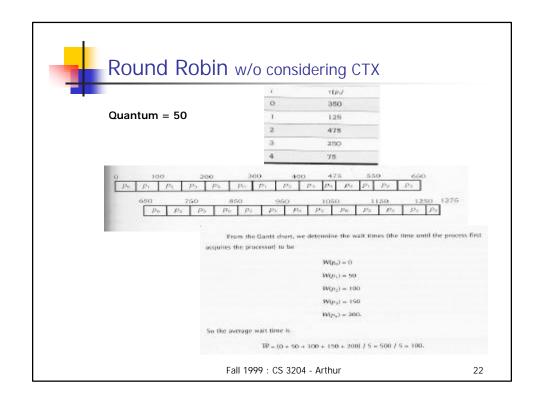
Fall 1999 : CS 3204 - Arthur

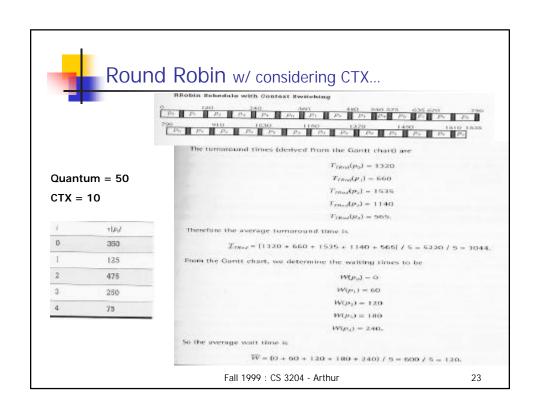
Preemptive Strategies- Priority Scheduling

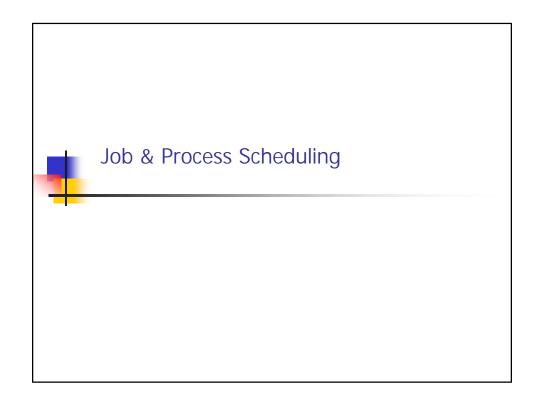
- Priority Scheduling
 - Externally assigned priorities used to determine
 - Who is (initially) selected to run
 - If currently running process is interrupted in favor of newly arrived process
- Note: With preemptive scheduling, CTX can have significant impact

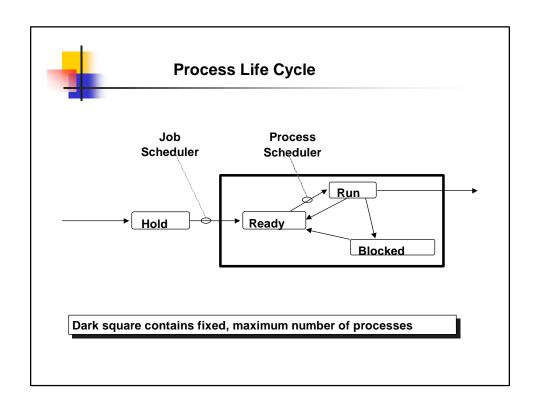
Fall 1999 : CS 3204 - Arthur


19




Preemptive Strategies - Round Robin


- RR Round Robin
 - Most widely used
 - Each process will receive some time slice or quantum quantum << service time of P_i
 - User interrupts timer
 - Scheduler continuously cycles through Ready queue giving each process 1 quantum of CPU time
 - I/O request can cause process to loose part of its quantum


Fall 1999 : CS 3204 - Arthur

Job Scheduler & Process Scheduler

Job Scheduler

- · Controls when jobs will be allowed to contend the CPU
- Most popular techniques

FIFO First in, first out SJF Shortest job first

Process Scheduler

- Controls when individual jobs (processes) will actually get the CPU
- Only interesting in multi-programming
- Most popular technique is Round Robin
 - Give each process one time slice in turn until complete

Fall 1999 : CS 3204 - Arthur

Interrupts

- An interrupt is generated to inform the system of completion of a particular event, such as the completion of I/O, the expiration of a time slice, etc.
- Interrupts can be generated by hardware or software
- The code which handles an interrupt is called the Interrupt Service Routine

Fall 1999: CS 3204 - Arthur

27

Interrupt Handling

- The OS gains control
- The OS saves the <u>state</u> of the interrupted process
 - Utilizes process PCB
- The OS
 - Analyzes the interrupt
 - Passes control to the appropriate Interrupt Handler (IH)
- When IH is done, CPU is dispatched to either
 - · Process that was running prior to interrupt, OR
 - Process at the head of the Ready queue

Fall 1999 : CS 3204 - Arthur

Scheduling Objectives

- Be Fair
- Maximize Throughput
- Minimize Response time delay
- Balance Resource Usage
- Enforce Priorities
- Give Preference to Processes holding Key Resources

Fall 1999 : CS 3204 - Arthur

29

Job Scheduling: SJF -: Shortest Job First

Scheduling based on estimated run time.

(Estimating run time is, however, normally impossible!)

- Favors short jobs over long ones
- Tends to
 - reduce number of jobs running, but
 - increases turnaround time for long jobs
- Usually paired with non-preemptive (run-to-completion) process scheduling
 - average turnaround time is less than or equal to any other nonpreemptive discipline (including FIFO)

Fall 1999 : CS 3204 - Arthur

Turnaround and Weighted Turnaround Time

Let: N be number of jobs

A_i be arrival time of i-th job F_i be finish time of i-th job

Turnaround time for i^{th} job: $T_i = F_i - A_i$

Average turnaround time for i^{th} job: $T = ST_i / N$

Weighted turnaround time for ith job:

 $WT_i = (F_i - A_i) / (Service-time)_i$

Average Weighted Turnaround time:

 $WT = SWT_i / N$

Fall 1999 : CS 3204 - Arthur

31

Job & Process Sched: Example 1

Assume

job arrival and runtimes as	<u>Job</u>	<u>Arrives</u>	Run Time
shown	1	10.0	2.0
Non-preemptive	2	10.1	1.0
process scheduling (run to completion)	3	10.25	0.25

No I/O or Memory Constraints

When would the jobs finish given that the **job scheduling** algorithm was:

- 1) FIFO
- 2) Shortest Job First?

Fall 1999 : CS 3204 - Arthur

Example 1 - FIFO Solution

<u>Job</u>	<u>Arrives</u>	<u>Start</u>	<u>Finish</u>	<u> I</u> <u>i</u>	$\underline{WT_{\mathtt{i}}}$
1	10.0				
2	10.1				
3	10.25				

Average Turnaround = T = _____

Average Weighted Turnaround = WT = _____

Fall 1999 : CS 3204 - Arthur

33

Example 1 - FIFO Solution (completed)

<u>Job</u>	<u>Arrives</u>	<u>Start</u>	<u>Finish</u>	<u>Turnaround</u>
1	10.0	10.0	12.0	2.0
2	10.1	12.0	13.0	2.9
3	10.25	13.0	13.25	3.0
				7.9

Avg Turnaround time T = 2.63

Fall 1999 : CS 3204 - Arthur

Example 1 - SJF Solution

<u>Job</u>	<u>Arrives</u>	<u>Start</u>	<u>Finish</u>	<u>Turnaround</u>
1	10.0			
2	10.1			
3	10.25			

Average Turnaround time T = ____

Fall 1999 : CS 3204 - Arthur

35

Example 1 - SJF Solution

<u>Job</u>	<u>Arrives</u>	<u>Start</u>	<u>Finish</u>	<u>Turnaround</u>
1	10.0	10.0	12.0	2.0
2	10.1	12.25	13.25	3.15
3	10.25	12.0	12.25	2.0

Average Turnaround time T = 2.38

Fall 1999 : CS 3204 - Arthur

Preemptive Process Sched. Algorithms

1) Round Robin (RR)

Each process runs either until

- its time quantum expires, or
- it blocks to perform I/O.

2) Priority

Each process is statically assigned a priority; run high before low priority (RR within Priority for equal priorities)

3) Dynamic Priority

Same as #2, except priority level of each process can change dynamically.

Fall 1999 : CS 3204 - Arthur

37

Preemptive Process Sched. Algorithms...

4. Processor Sharing (PS)

Limit of RR as time quantum goes to zero.

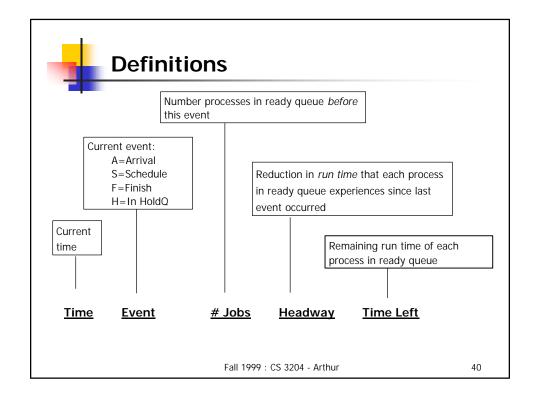
(Like giving each CPU cycle to a different process, in round robin fashion.)

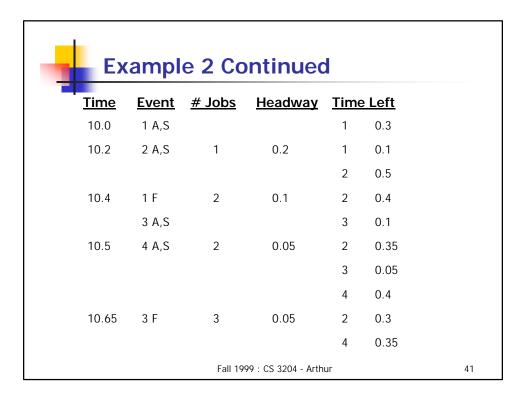
N processes scheduled by PS = each job runs on dedicated N-fold slower CPU. Thus, READY = RUNNING.

CPU Time "shared" equally among processes

Fall 1999 : CS 3204 - Arthur

Scheduling Example 2


Assume:


Multiprogramming FIFO Job Scheduling

Processor Sharing Process Scheduling

<u>Job</u>	<u>Arrives</u>	Run Time
1	10.0	0.3
2	10.2	0.5
3	10.4	0.1
4	10.5	0.4
5	10.8	0.1

Fall 1999 : CS 3204 - Arthur

Example 2 Continued						
<u>Time</u>	<u>Event</u>	# Jobs	<u>Headway</u>	<u>Tin</u>	ne Left	
10.8	5 A,S	2	0.075	2	0.225	
				4	0.275	
				5	0.1	
11.1	5 F	3	0.1	2	0.125	
				4	0.175	
11.35	2 F	2	0.125	4	0.05	
11.40	4 F	1	0.05			
		Fall 1999 :	CS 3204 - Arthur			

T and W for Example 2

<u>Job</u>	<u>Run</u>	<u>Start</u>	<u>Finish</u>	<u>Ti</u>	<u>WTi</u>
1	0.3	10.0	10.4	0.4	1.33
2	0.5	10.2	11.35	1.15	2.3
3	0.1	10.4	10.65	0.25	2.5
4	0.4	10.5	11.4	0.9	2.25
5	0.1	10.8	11.1	0.3	3.0
	1.4			3.0	11.38
			T = 0	.6	WT = 2.276

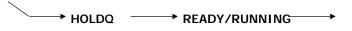
Check:

Because CPU was never idle, 1.4 + 10.0 must equal time of last event (11.4)

Fall 1999 : CS 3204 - Arthur

43

Scheduling Example 3


Assume:

FIFO Job Scheduling 100 K Main Memory

5 Tape Drives

Processor Sharing Process Scheduling

<u>Job</u>	<u>Arrives</u>	Run Time	Memory	<u>Tapes</u>
1	10.0	0.3	10	2
2	10.2	0.5	60	1
3	10.4	0.1	50	4
4	10.5	0.4	10	2
5	10.8	0.1	30	3

Fall 1999 : CS 3204 - Arthur

Example 3 Continued

<u>Time</u>	<u>Event</u>	# Jobs	<u>Hway</u>	<u>MM</u>	<u>Tapes</u>	<u>Time</u>	Left	
10.0	1 A,S			90	3	1	0.3	
10.2	2 A,S	1	0.2	30	2	1	0.1	
						2	0.5	
10.4	1 F	2	0.1	40	4	2	0.4	
	3 A,H							
10.5	4 A,S	1	0.1	30	2	2	0.3	
						4	0.4	
10.8	5 A,H	2	0.15	30	2	2	0.15	
						4	0.25	
Fall 1999 : CS 3204 - Arthur								

Example 3 Continued ...

<u>Time</u>	<u>Event</u>	# Jobs	<u>HWay</u>	<u>MM</u>	<u>Tapes</u>	<u>Time</u>	Left
11.1	2 F	2	0.15	90	3	4	0.1
	5 S			60	0	5	0.1
11.3	5 F	2	0.1	90	3	3	0.1
	4 F			100	5		
	3 S			50	1		
11.4	3 F	1	0.1	100			

Fall 1999 : CS 3204 - Arthur

46

T and W for Example 3

<u>Job</u>	<u>Run</u>	<u>Arrives</u>	<u>Finish</u>	<u>Ti</u>	<u>WTi</u>
1	0.3	10.0	10.4	0.4	1.33
2	0.5	10.2	11.1	0.9	1.8
3	0.1	10.4	11.4	1.0	10.0
4	0.4	10.5	11.3	0.8	2.0
5	0.1	10.8	11.3	0.5	5.0
				3.6	20.13

T = 0.72 WT = 4.026

Fall 1999 : CS 3204 - Arthur

47

Scheduling Example 4

Assume:

FIFO Job Scheduling 100 K Main Memory

5 Tape Drives Processor Sharing Process Scheduling

<u>Job</u>	<u>Arrives</u>	Run Time	<u>Memory</u>	<u>Tapes</u>			
1	1.0	0.5	30	2			
2	1.2	1.0	50	1			
3	1.3	1.5	50	1			
4	1.4	2.0	20	2			
5	1.7	0.5	30	3			
6	2.1	1.0	30	2			
Fall 1999 : CS 3204 - Arthur							

Example 4 Continued								
	<u>Time</u>	<u>Event</u>	# Jobs	<u>HWay</u>	<u>MM</u>	<u>Tapes</u>	Time Le	<u>ft</u>
	1.0	1 A,S			70	3	1 0.5	
	1.2	2 A,S	1	0.2	20	2	1 0.3	
							2 1.0	
	1.3	3 A,H	2	0.05	20	2	1 0.25	
							2 0.95	
	1.4	4 A,S	2	0.05	0	0	1 0.2	
							2 0.9	
							4 2.0	
	1.7	5 A,H	3	0.1	0	0	1 0.1	
							2 0.8	
							4 1.9	
	2.0	1 F	3	0.1	30	2	2 0.7	
							4 1.8	
Fall 1999 : CS 3204 - Arthur								49

<u>Time</u>	Event	# Jobs	<u>HWay</u>	<u>MM</u>	<u>Tapes</u>	<u>Tim</u>	ne Left
2.1	6 A,S	2	0.05	0	0	2	0.65
						4	1.75
						6	1.0
4.05	2 F	3	0.65	50	1	4	1.1
	3 S			0	0	6	0.35
						3	1.5
5.1	6 F	3	0.35	30	2	4	0.75
						3	1.15
6.6	4 F	2	0.75	50	4	3	0.4
	5 S			20	1	5	0.5
7.4	3 F	2	0.4	70	2	5	0.1
7.5	5 F	1	0.1	100	5		

T and W for Example 4

<u>Job</u>	<u>Run</u>	<u>Arrives</u>	<u>Finish</u>	<u>Ti</u>	<u>WTi</u>
1	0.5	1.0	2.0	1.0	2.0
2	1.0	1.2	4.05	2.85	2.85
3	1.5	1.3	7.4	6.1	4.06
4	2.0	1.4	6.6	5.2	2.6
5	0.5	1.7	7.5	5.8	11.6
6	2.1	2.1	5.1	3.0	3.0
				23.95	26.11

T = 3.99 WT = 4.35

Fall 1999 : CS 3204 - Arthur