
1

Chapter 4

 Computer Organization

CS 3204 - Arthur 2

Von Neuman Concept

n Stored program concept
n General purpose computational device driven by

internally stored program
n Data and instructions look same i.e. binary
n Operation being executed determined by HOW we

look at the sequence of bits
n Fetch
n Decode
n Execute

View bits as instruction

Data might be fetched as a result of execution

2

CS 3204 - Arthur 3

Von Neuman Architecture

n CPU
n ALU
n Control Unit

n I/O Buses
n Memory Unit
n Devices

CS 3204 - Arthur 4

Von Neuman Machine Architecture
CPU = ALU + Cntrl Unit

Cntrl Unit

Buses

- fetch
- decode
- execute

ALU

ALU

Address Bus / Data Bus wires
over which Instr / data is
transferred from memory to ALU

Von Nuemann Bottleneck

+ Instruction set
+ Arithmetic & Logic

- Functional Unit

- Registers
+ Intermediate storage

3

CS 3204 - Arthur 5

CPU: ALU Component

n Assumes instruction format: OP code, LHO, RHO
n Instruction / data fetched & placed in register
n Instruction / data retrieved by functional unit & executed
n Results placed back in registers

n Control Unit sequences the operations

CS 3204 - Arthur 6

CPU: Control Unit Component

n Fetch Unit
n Get instruction at location pointed to by PC and place in IR

n Decode Unit
n Determine which instruction & signal hardware that implements it

n Execute Unit
n Hardware for instruction execution (could cause more data fetches)

Von Nuemann
Execution Cycle

PC => Program Counter
IR => Instruction Register

4

CS 3204 - Arthur 7

Fetch – Execute cycle

Decode(IR)

Fetch

CS 3204 - Arthur 8

OS boot-up…

n How does the system boot up ?
n Bootstrap loader
n OS
n Application

5

CS 3204 - Arthur 9

A Bootstrap Loader

The power-up sequence
load PC, FIXED_LOC

Where FIXED_LOC addresses the bootstrap loader (in ROM).

The bootstrap loader has the form:
load R1, =0
load R2, = LENGTH_OF_TARGET

loop: read R1, FIXED_DISK_ADDRESS
store R1, [FIXED_DEST, R1]
incr R1
bleq R1, R2, loop
br FIXED_DEST

Address of BS Loader

Reads
OS in

Branches to OS

Fetch

Decode

Execute

CS 3204 - Arthur 10

Memory Unit

Memory
Unit

6

CS 3204 - Arthur 11

Memory Unit

n Memory Unit contains
n Memory

n Instructions & Data
n MAR (Memory Address Register)
n MDR (Memory Data register)
n CMD (Command Register)
n Get instruction at location pointed to by PC and place in IR

CS 3204 - Arthur 12

Memory Access

n Read from Memory
n MAR ß MemAddr

n CMD ß ‘Read OP’ (from IR)
n Execute

MDR ß Mem[MAR]

n Write to Memory
n MAR ß MemAddr
n CMD ß ‘Write OP’ (from IR)
n Execute

Mem[MAR] ß MDR

7

CS 3204 - Arthur 13

Device & Device Controller

Device &
Device

Controller

Device Driver

Device Controller

Device

In OS

Interfaces

CS 3204 - Arthur 14

Device Controller-Software Relationship

Device driver

Standard Interface

Bus

PCI

SCSI

8

CS 3204 - Arthur 15

Device Controller Interface

Interface to driverDriver places
command if
status “Done”

Driver interrogated these
to check status of device

CS 3204 - Arthur 16

Device Controller

n Device controller is a processor and allows 2 parts of
the process to proceed concurrently

Program Controller

write Prints info

9

CS 3204 - Arthur 17

Device Driver Interface

Terminal Printer Disk

Controller/Driver
Interface

Controller/Device
Interface

Interface presented by
Driver to Application
program thru OS

OS could provide higher level
operations to application than the
one Driver presents to it

CS 3204 - Arthur 18

How do interrupts factor in ?

n Scenario (1)
n Program:

while device_flag busy {}

=> Busy wait - consumes CPU cycles

n Scenario (2)
n Program:

while (Flag != write) {
sleep(X)

}

=>If write available while program sleeping - inefficient

10

CS 3204 - Arthur 19

How do interrupts factor in ? …

n Scenario (3)
n Program:

issues “write”
Driver:
n Suspend program until

write is completed,

then program is
unsuspended

This is Interrupt-driven

CS 3204 - Arthur 20

Interrupts Driven Service Request

n Process is suspended only if driver/controller/device
cannot service request

n If a process is suspended, then, when the suspended
process’ service request can be honored
n Device interrupts CPU
n OS takes over
n OS examines interrupts
n OS un-suspends the process

n Interrupts
n Eliminate busy wait
n Minimizes idle time

11

CS 3204 - Arthur 21

Interrupts …
disables interrupts

Interrupt processed

enables interrupts

If priority of 2nd
interrupt higher than
1st then 1st interrupt
suspended

2nd interrupt handled
Resumption of
handling 1st
interrupt

Interrupt Handler in OS:

What if multiple devices (or 2nd device) sends
interrupt while the OS is handling prior interrupt ?

:
:
:
:

