Chapter 4

* Computer Organization

Von Neuman Concept

= Stored program concept

= General purpose computational device driven by
internally stored program

= Data and instructions look same i.e. binary

= Operation being executed determined by HOW we
look at the sequence of bits

u Fetch
= Decode View bits as instruction
" Execute

Ny

Data might be fetched as aresult of execution

CS 3204 - Arthur 2

Von Neuman Architecture

CPU ; Tha wom Meumann Machlne Archlbeciure
|

= ALU eniral Processing Unif ICPL

= Control Unit A I S I
= |/O Buses I
= Memory Unit
= Devices

Primary Memiry Unit
CS 3204 - Arthur 3

Von Neuman Machine Architecture

CPU = ALU + Cntrl Unit

| PravRE 42] .
ALU The von Heemana Machine Architsciore Cntrl Un It
.) - fetch
- Functional Unit Crniral Processing Uil 1GPL - decode
+ Ingtructiqn set " .‘.R'.xl:t “Logical Unil A / - execute
+ Arithmetic & Logic i Cantral Uni
- Regqisters ALU

Adidre=s Mus

+ Intermediate storage

Address Bus / Data Bus wires
over which Instr / data is
Buses transferred from memory to ALU

Von Nuemann Bottleneck

CS 3204 - Arthur 4

CPU: ALU Component

TIGUAE 4.2
A Ganeric Arithmotical-logical Unis

Right Cperand

Lelt Sperard

e

Gensral Regelerd FuriicoyUnit Stalus Regisiers

-
Rz

= Assumes instruction format: OP code, LHO, RHO
= Instruction / data fetched & placed in register
= Instruction / data retrieved by functional unit & executed
= Results placed back in registers

= Control Unit sequences the operations

CS 3204 - Arthur 5

CPU: Control Unit Component

PC => Program Counter
IR => Instruction Register

FIGUEE 4.8

The PE. I, amd Memory

[
[Simei, |

Von Nuemann O R
Execution Cycle e L R
TR add R3, R4 | 2054

Il-! siore B3 @ ANEE

Coeneol Linkt Primary Momory

= Fetch Unit

= Get instruction at location pointed to by PC and place in IR
= Decode Unit

= Determine which instruction & signal hardware that implements it
= Execute Unit

= Hardware for instruction execution (could cause more data fetches)

CS 3204 - Arthur 6

Fetch —Execute cycle

The Fetch-Execute Cycle

Pl = <machine start address*;
IR = memory [FC];
haltFlag = CLEAK:

while {haltFlag not SET during execution] [

execute (IR] ; Decgde(IR)
PQ = PC+ 1:
IE = memory [PO] ;
¥i
Fetch
CS 3204 - Arthur 7
OS boot-up...
= How does the system boot up ?
= Bootstrap loader
= OS
= Application
CS 3204 - Arthur 8

A Bootstrap Loader

The power-up sequence
l oad PC, FIXED_LOC

—

Address of BS Loader

Where FIXED_LOC addresses the bootstrap loader (in ROM).

The bootstrap loader has the form:

load R1, =0

|l oad R2, = LENGTH_OF_TARGE
| oop: read R1, FIXED DI SK_ADDRES

store R1, [FIXED_DEST, R1]

incr R1L

bleq R1, R2, |oop

br FI XED_DEST

\

Reads
OSin

Branches to OS

Fetch
Decode

Execute

CS 3204 - Arthur 9
Memory Unit
| pravRE 42]
The von Newmana Maching Archireciure
eriral Processirg Uil [GPL
Arithametic-Loaical Uml
ALY
Memory
Unit Aol re== Mo
Frimary Memaory Lird
Executable Mamoary
e
CS 3204 - Arthur 10

Memory Unit

= Memory Unit contains
= Memory
= Instructions & Data
= MAR (Memory Address Register)
= MDR (Memory Data register)
= CMD (Command Register)
= Get instruction at location pointed to by PC and place in IR

ﬁl__: — T_

Device Canbrolcr

Frimarny Memaors Lind

Exccutahble Memeary
DeAce

CS 3204 - Arthur 11

Memory Access

= Read from Memory LT T
The Memory Organization
= MAR < MenmAddr

« CMD ¢ ‘Read OP' (from IR) |,_k,.i,_\ _,I
= Execute AR wrry WY y

MDR ¢« Menf MAR] ‘*\‘I‘. .

MDR m___".; : H‘\
= Write to Memory o[w4 %

= MAR & MemAddr 1134 [T
= CMD ¢« ‘Wite OP (from IR)
= Execute

Menf MAR] < MR e

CS 3204 - Arthur 12

won Newmano Machine Architeciure

CEnral Processirg Unil 1IGPLD

Arithamsetiic-Logical Lnil
ALY

Cqankral Lrat

e

Adidre=s Mus

Data Bug T /
Dewice Controller
Frimary Memary Uit - ':J
Exgcutable Memary ol
Dedce

CS 3204 - Arthur

i

Q

Device & Device Controller

evice &

Device
ontroller

In OS

~

Device Driver

Device Controller

/ Device

Interfaces

13

The Device-Controllsr-Goltware Relniicnship

Bus

Apphcalian Soffwans

B “—
S0 Bachine m
clolwe

Desice Controfier

Device

CS 3204 - Arthur

Device Controller-Software Relationship

—— Device driver

Standard Interface

Sl

14

Device Controller Interface

Driver interrogated these

CFIGORE 4.8 | to check status of device
The Device Contraller Intorface /

| | By | Iklnu_ll!rrnrk‘.n-de I |

Driver places
command if
status “Done””

Interface to driver

Dewice Conlroller

CS 3204 - Arthur 15

Device Controller

= Device controller is a processor and allows 2 parts of
the process to proceed concurrently

Program Controller

wite Prints info

/\

CS 3204 - Arthur 16

Device Driver Interface

Interface presented by
Driver to|Application
program thru OS

OS could provide higher level
operations to application than the

one Driver presentsto it \

w:’|:-::|)

! /

Terminal Printer Digk
Controller/Driver Drvar Diriwer Driver
Interface ——u | |
Termina Prister =k
] Contraller Controller Controller
Controller/Device l t 1
Interface > I |
Terminal Printer Disk
CS 3204 - Arthur 17

How do interrupts factor in ?

= Scenario (1)

= Program:
whi |l e device_flag busy {}

=> Busy wait - consumes CPU cycles

= Scenario (2)

= Program:
while (Flag '= wite) {
sleep(X)
}

==If write available while program sleeping - inefficient

CS 3204 - Arthur 18

How do interrupts factor in ? ...

= Scenario (3)
= Program: Driver:

i ssues “write” = Suspend program until

write is completed,

then program is
unsuspended

ThisisInterrupt-driven

CS 3204 - Arthur 19

Interrupts Driven Service Request

= Process is suspended only if driver/controller/device
cannot service request

= If a process is suspended, then, when the suspended
process ”service request can be honored
= Device interrupts CPU
= OS takes over
= OS examines interrupts
= OS un-suspends the process

= Interrupts
= Eliminate busy wait
= Minimizes idle time

CS 3204 - Arthur 20

10

Interrupts ...

Interrupt Handler in OS: di sables interrupts

I nterrupt processed

enabl es interrupts

What if multiple devices (or 2"d device) sends
interrupt whilethe OSishandling prior interrupt ?

If priority of 2nd

interrupt higher than Resumption of
1st then 1st interrupt ond interrunt handled handling 1st
suspended :> P :> interrupt

CS 3204 - Arthur 21

11

