
Due: Midnight, Friday, Sep. 22 1

CS3204 Operating Systems - Fall 2000
Instructor: Dr. Craig A. Struble

Shared Libraries

Assigned: Thursday, Sep. 7 Due: Midnight, Friday, Sep. 22

1 Introduction

Years ago, linkers used to generate binaries with a copy of standard library object code.
This contributed not only to wasteful disk space usage, but memory usage as well. Having
copies of standard library code included in each executable was easier for operating system
designers and implementors, however. An executable was loaded into memory and any
machine code needed for execution was readily available.

The Win32 platform and modern versions of Unix now support reusable libraries of
code. Only one copy of standard libraries exist on disk and in memory. When a library is
needed, the operating system loads it into memory once, and any new executables use the
already loaded library. The Win32 name for these reusable libraries is Dynamically Linked
Library (DLL) and the Unix name is shared library or shared object.

The goal of this assignment is to introduce the interface to the system loader under
Unix. With this interface, executable code, in the form of shared objects, can be loaded
and executed at runtime. Furthermore, the code can be unloaded (i.e., removed from
memory) by the application. This interface is primarily used to implement plug-in systems
such as ones used by Java, Netscape, and the Linux/FreeBSD kernels.

2 Specification

You are to implement an interactive program for loading, unloading, and executing code
in shared object files. In addition, you must implement two different shared object files to
demonstrate that all of the features of your interactive program function properly.

Your interactive program must provide the following commands:

Command Function
load <filename> Loads the shared object file named <filename> into

memory. You may assume filename will not contain
any spaces or other non-printable characters.

unload <filename> Removes the shared object file named <filename>.
list Lists the shared object files loaded and displays the

memory added where they are located.
call <filename> <function> Call the C function <function> contained in the

shared object named <filename>. The function will
have the prototype void <function>().

help List the available commands with a brief description
of each command. The command syntax should also
be included.

quit Unload any loaded shared objects and exit your pro-
gram.

exit Unload any loaded shared objects and exit your pro-
gram.



Due: Midnight, Friday, Sep. 22 2

Your program must also display a brief introductory message and provide a command
line prompt for the user. Upon success, the commands load, unload, and call should
print out a message including the memory location where the shared object was loaded,
verification that the shared object was unloaded, or the addresses of the function executed
and the shared object containing the function respectively. Upon failure of any command,
your program should indicate that a failure occurred, and a description of what caused the
error. Be sure to indicate if a user types in an improper command.

Note, it is perfectly valid to load a shared object file more than once. Read the manual
pages referenced in Section 3 for details.

When implementing shared objects, you must have the object print out a message when
it is loaded into memory for the first time and a message when the object is unloaded from
memory. These messages will not correspond to each execution of load and unload in your
interactive program. Each shared object must have at least two functions to call. The
functions must indicate, by printed messages, that they have been successfully called.

3 References

To implement your project, you will need to use the dlopen(...), dlerror(...),
dlsym(...), and dlclose(...) functions. Executing man on any one of those functions
provides you with the reference material you need to implement your interactive program.
Furthermore, details elaborating on special features of shared objects are included in the
manual page. You will need to link against the dl library for these functions to be available
(i.e., the -ldl flag is needed during compilation).

In addition, you should read the manual pages for ld and ld.so for more information
regarding the linker and loader. To construct your shared object, you will need to first
compile it so that the loader can place it into an arbitrary location in memory. This is
accomplished by using position independent code (PIC) during the compilation process.
The correct compilation command is

cc -fpic -c sharedobj.c

which will generate a sharedobj.o object file, appropriately compiled. To generate a
shared object under Linux once the object file has been created, you must use the linker.
The correct link command is

ld -shared sharedobj.o -o sharedobj.so

which will generate sharedobj.so, the shared object file.

4 Discussion

As part of the documentation requirement, you must provide a brief discussion for the fol-
lowing scenario. The interface provided by the dynamic loader does not include a method for
gathering the function names available in a shared object. Using only the current dynamic
loader interface, design a specification and briefly discuss a possible avenue for implemen-
tation to list the available functions in a shared object when the shared object is loaded into
memory.

Keep your answer to one or two paragraphs. You do not need to implement your
specification, just provide a general idea of what is necessary and how it might work.
Simply providing an implementation is not acceptable.



Due: Midnight, Friday, Sep. 22 3

5 Submission

We will use the Curator, http://ei.cs.vt.edu/~eags/Curator.html to collect program
submissions. The URL for submission is http://spasm.cs.vt.edu:8080/curator/. Only
the servlet interface to the Curator is supported. No grading will be done by the Curator.

You are to submit a single tarred (man tar) and gzipped (man gzip) archive containing

• A README text file describing the program, describing the contents of the archive,
providing building instructions (including the platform you used for development), a
user’s guide (including how to start the program), and examples of usage with your
shared objects;

• A DISCUSSION text file containing your answer to the discussion question;

• The source code for your program and shared objects;

• A script named build or a suitable Makefile for building your program and shared
objects.

Be sure to include your name in all files submitted. DO NOT include executables or
object files of any type in the archive.

6 Programming Environment

As stated in the syllabus, you may use either FreeBSD or Linux and ANSI C/C++ to
implement this project. The linker command to create shared objects under FreeBSD may
be slightly different, but FreeBSD provides the same interface to the system loader. All
data structures used in your program must be student implemented. Using the
standard template library (STL) or other third party libraries for data structure
implementations is strictly prohibited.


