Chapter 9

!'_\ High-level Synchronization

Introduction to Concurrency

= Concurrency

= EXxecute two or more pieces of code "at the same time*“

= No choice:
= Geographically distributed data
= Interoperability of different machines
= A piece of code must "serve" many other client processes
= To achieve reliability

= By choice:
= TO achieve speedup
= Sometimes makes programming easier (e.g., UNIX pipes)

CS 3204

Possibilities for Concurrency

Architecture:

Program Style:

Uniprocessor with:

- 1/0O channel

- 1/0O processor

- DMA

Multiprogramming,

multiple process system

programs

Multiprocessor

Parallel programming

Network of processors

Distributed Programs

CS 3204

Examples of Concurrency
In Uniprocessors

Example 1: Unix pipes

Motivations:
- fast to write code
- fast to execute

Example 2: Buffering

Motivation:

- required when two asynchronous processes must
communicate

Example 3: Client/Server model

Motivation:

- geographically distributed computing

CS 3204

Operating System issues to
Support Concurrency

= Synchronization
= What primitives should OS provide ?

= Communication
= What primitives should the OS provide to the interface
communication protocol ?

= Hardware Support
= Needed to implement OS primitives

CS 3204

Operating System issues to
Support Concurrency...

= Remote execution

= What primitives should OS provide ?
= Remote Procedure Call (RPC)
= Remote Command Shell

= Sharing address space
= Makes programming easier

= Light-weight threads
= Can a process creation be as cheap as a procedure call ?

CS 3204

Definitions

= Concurrent process execution can be:

= Interleaved, or

= physically simultaneous

= Interleaved

= Multi-programming on uniprocessor

= Physically simultaneous

= Uni- or multi-programming on multiprocessor

CS 3204

Definitions...

s Process, thread, or task

= Scheduleable unit of computation

= Granularity
= Process "size" or computation to
= Communication ratio
=« Too small: excessive overhead

« Too large: less concurrency

CS 3204

Precedence Graph

Consider writing a program as a set of tasks.

Precedence graph:

specifies execution ordering among tasks

Parallelizing compilers for computers with vector processors build
dependency graphs.

CS 3204

Cyclic Precedence Graph

What does the following graph represent ?

S2 must be performed before S3 begins
AND

S3 must be performed before S2 begins

Precedence Graphs must
be ACYCLIC

CS 3204

(el (o))

Concurrency Conditions

Let Si denote a statement.

Read set of Si:
R(SI) = {al, az,...,an}

Set of all variables referenced in Si

Write set of Si:
W (Si) = {bl, b2, .., bm}

Set of all variables changed by Si

CS 3204

Concurrency Conditions...

C =A-8B
R(C =A-B)={ADB}
W(C =A-B)={C}

scanf ("%d", &A)

R (scanf ("%d", &A)) = {}
W (scanf ("%d", &A)) = {A}

CS 3204

Bernstein's Conditions

The following conditions must hold for two statements S1 and S2 to
execute concurrently with valid results:

1) R(S1) INTERSECT W (S2) = {}
2) W (S1) INTERSECT R(S2) = {}
3) W (S1) INTERSECT W (S2) = {}

These are called the Bernstein Conditions.

CS 3204

Parallel Language Constructs (Review)

FORK and JOIN I

FORK L Starts parallel execution at the statement labelled L
and at the statement following the FORK

JOIN Count Recombines 'Count' concurrent computations

Count := Count - 1,
If

(Count>0)
Then

Terminate computation

Join is an atomic operation. else continue

CS 3204

PARBEGIN

PAREND

Structured Parallel Constructs

PARBEGIN / PAREND I

Sequential execution splits off into several concurrent

sequences

Parallel computations merge

PARBEGIN
Statement 1;

Statement 2;

Statement N;

PAREND;

CS 3204

PARBEGIN
Q = C mod 25;

Begin
N =N - 1;
T :=N/5
End;
Procl (X,Y);

PAREND;

Parbegin / Parend
Examples

Begin
PARBEGIN
A =X +Y,;

B =272+ 1;
PAREND;
C = A - B;
W :=C + 1;
End;

Begin
S1,
PARBEGIN
S3;
BEGIN
S2;
S4,
PARBEGIN
S5;
S6;
PAREND;
End;
PAREND;
S7,
End;

CS 3204

Synchronization with Monitors

CS 3204

Monitors

= P & V are primitive operations

= Semaphore solutions are difficult to accurately express for
complex synchronization problems

= Need a High-Level solution: Monitors
= A Monitor is a collection of procedures and shared data

= Mutual Exclusion is enforced at the monitor boundary by the
monitor itself

= Data may be global to all procedures in the monitor or local to a
particular procedure

s NO access of data is allowed from outside the monitor

CS 3204

Condition Variables

= Within the monitor, Condition Variables are declared
= A queue is associated with each condition variable

= Only two operations are allowed on a condition variable:

The procedure performing the wait is put on the

X.wait gueue associated with x

If gueue is non-empty: resume some process at

X.signal o .
the point it was made to walit

* Note: V operations on a semaphore are "remembered," but if
there are no waiting processes, the signal has no effect

* OS scheduler decides which of several waiting monitor calls to
unlock upon signal

CS 3204

Monitor...

= Queue to enter monitor via calls to procedures
= Queues within the monitors via condition variables

= ADTs and condition variables only accessible via monitor
procedure calls

ADT 3 condition :
variables |

Procl
gueues queue

Proc2
Proc3

CS 3204

Monitors...

Monitors contain procedures that control access to a < CS >, but

not the < CS > code itself. Program
Monitor <name>
condlition i; _
Request Begin
Request;
<CS>
Release
Release;
_ End;
end monitor

CS 3204

N-Process Critical Section:
Monitor Solution

Moni tor NCS {
K. condition
Busy: bool ean <-- FALSE

Request () {
I f (Busy) K wait;

Busy = TRUE;
} Procedure P {
Rel ease() { NCS. Request () ;
Busy = FALSE <CS>;
OK. si gnal : NCS. Rel ease() ;
| }

mai n() {
par begin P; P; P, P, parend }

CS 3204

Shared Variable Monitor

noni t or shar edBal ance {

| nt bal ance;

public:
Procedure credit(int anount)
{ bal ance = bal ance + anount; }
Procedure debit(int anmount)
{ bal ance = bal ance - anount;}
}

CS 3204

Reader & Writer Schema

reader () { witer() {
whi | e(true){ whi l e(true){
startRead(); startWite();
<read the resource> <write resource>
fini shRead(); finishWite();
} }
} }

fork(reader, 0);
fork(reader, 0);
fork(witer, 0);

CS 3204

Reader & Writers Problem:
An attempted solution

noni tor readerWiter 1{
I nt nunber O Reader s
I nt nunberOFWiters
bool ean busy = fal se;
publ i c:
start Read() {
whi | e(nunber Of Readers !'= 0);

:O,
:O,

nunber & Readers = nunber O Reader s+1;

}
fini shRead() {

nunber & Readers = nunber & Reader s-1;

}
startWite(){

nunberOWiters = nunberOWiters+1;

whi | e(busy || nunber O Readers > 0);
busy = true;

}
finishWite() {

nunberOWiters = nunberOWiters-1;

busy = fal se;

}

CS 3204

This solution
does not work

Reader & Writers Problem:
The solution

noni tor reader_witer_ 2{
I nt nunber O Readers = 0;
bool ean busy = fal se;
condi ti on okToRead, okToWite;
publi c:
start Read(){
| f (busy || okToWite.queue) okToRead.wait;
nunber O Readers = nunber O Reader s+1;
okToRead. si gnal ;
}
fini shRead() {
nunber O Readers = nunber O Reader s-1;
I f (nunber O Readers =0) okToWite.signal;
}
startWite(){
| f (busy || nunber O Readers != 0) okToWite.wait;
busy = true;
}
finishWite() {
busy = fal se;
| f (okToWite.queue) okToWite. signal;
el se okToRead. si gnal ;

}

CS 3204

Dining Philosophers *Problem:
The solution

enum st atus {eating, hungry, thinking};
nmoni t or di ni ngPhi | osopher s{
status state[N]; condition self[N; int j;
/'l This procedure can only be called fromw thin the nonitor
test(int i) {
if((state[i=1 MOD N != eating) && (state[i] == hungry)
&% (state[i+1l MOD N] !'= eating)) {
state[i] = eating;
self[i].signal;

}
publi c:
pi ckUpFor ks () {

state[i] = hungry;
test(i);
i f(state[i] !'= eating) self[i].wait;

}

put DownFor ks() {
state[i] = thinking;
test(i-1 MO N); test(i+l MOD N);

}

di ni ngPhi | osophers() { // Mnitor initialization code
for(int 1=0; i<N, i++) state[i] = thinking;

}

CS 3204

Simple Resource Allocation
with a monitor

noni tor resourceAl |l ocat or;

var resourcel nUse: bool ean;
resourcel sFree: condition;

procedure get Resource;

begi n
| f (resourcelnUse) wait(resourcel sFree);
resourcel nUse : = true;
end;
procedure returnResource; Can use as
begi n a Semaphore
resourcel nUse : = fal se;
si gnal (resourcel sFree);
end;
begi n
resourcel nUse : = fal se;
end.

CS 3204

Monitor implementation
of a ring buffer

noni tor ringBufferMnitor;

var ringBuffer: array[O..slots-1] of stuff;

slotl nUse: O..slots;

next Sl ot ToFi I l: 0..slots-1;

next Sl ot ToEnpty: O0..slots-1;

ri ngBuf f er HasDat a, ringBufferHasSpace: condition;
procedure fill ASl ot (slotData: stuff);

begi n
i f(slotlnUse = slots) then wait(ringBufferHasSpace);
ringBuffer[nextSlotToFill] := slotData,;
slotlnUse := slotlnUse + 1;
next Sl ot ToFi Il := (nextSlotToFill+1) MDD slots;
si gnal (ri ngBufferHasDat a) ;
end;

CS 3204

Monitor implementation
of a ring buffer...

procedure enptyAS| ot (var slotData: stuff);

begi n
I f(slotlnUse = 0) then wait(ringBufferHasData);
slotData : = ringBuffer[nextSlotToEnpty];
slotlnUse := slotlnUse - 1;
next Sl ot ToEnpty : = (next Sl ot ToEnpty-1) MD sl ots;
si gnal (ri ngBuf f er Space) ;

end;

begi n
slotlnUSe : = 0;
next Sl ot ToFi Il := 0;
next Sl ot ToEnpty : = O;

end.

CS 3204

