
Chapter 8

Basic Synchronization Principles

CS 3204 - Arthur 2

n Multiprogramming
è Multiple concurrent, independent processes
è Those processes might want to coordinate activities

n Clearly, synchronization is needed if
n A wants B to read x after it writes it & before it re-writes

Proc A {
while (true) {

<compute A1>
write(x)
<compute A2>
read(y)
}

}

Proc B {
while (true) {

read(x)
<compute B1>
write(y)
<compute B2>
}

}

Need for Synchronization

shared x, y

CS 3204 - Arthur 3

Barriers to providing synchronization

n What are the barriers to providing good
synchronization capabilities ?
n No widely accepted parallel programming languages

n CSP
n Linda

n No widely use paradigm
n How do you decompose a problem ?

n OS only provides minimal support
n Test and Set
n Semaphore
n Monitor

CS 3204 - Arthur 4

Critical Section Problem

/* Code schema for p1 */

..

balance = balance + amount;

..

/* Code schema for p1 */

..

balance = balance - amount;

..

/* Schema for p1 */

/* X == balance */

 load R1, X

 load R2, Y

 add R1, R2

 store R1, X

/* Schema for p2 */

/* X == balance */

 load R1, X

 load R2, Y

 sub R1, R2

 store R1, X

shared float balance;

CS 3204 - Arthur 5

Critical Section Problem…

n Suppose:
n Execution sequence : 1, 2, 3

n Lost update : 2
n Execution sequence : 1, 4, 3 ,6

n Lost update : 3

n Together => non-determinacy
n Race condition exists

/* Schema for p1 */

 load R1, X

 load R2, Y

 add R1, R2

 store R1, X

1

3
5

/* Schema for p2 */

 load R1, X

 load R2, Y

 sub R1, R2

 store R1, X
6

4
2

CS 3204 - Arthur 6

Using Shared Global Variables – Ver 1

procedure processone;
begin
 while true do
 begin
 while processnum == 2 do;
 criticalsectionone;
 processnumber := 2;
 otherstuffone;
 end
 end

procedure processtwo;
begin
 while true do
 begin
 while processnum == 1 do;
 criticalsectiontwo;
 processnumber := 1;
 otherstufftwo;
 end
 end

 Single global variable forces lockstep synchronization

Hard wait

Hard wait

Shared integer: processnumber <= 1;

CS 3204 - Arthur 7

Using Shared Global Variables – Ver 2

procedure processone;
 begin

while true do
 begin
 while p2inside do;
 p1inside := true;
 criticalsectionone;
 p1inside := false;
 otherstuffone;
 end

 end

procedure processtwo;
 begin

while true do
 begin
 while p1inside do;
 p2inside := true;
 criticalsectiontwo;
 p2inside := false;

 otherstufftwo;
 end

 end

• Process 1 & 2 can both be in the critical sections at the same time
 Because Test & Set operations are not atomic
 ==> Move setting of p1inside/p2inside before test

Shared boolean: p1inside <= false, p2inside <= false;

CS 3204 - Arthur 8

Using Shared Global Variables – Ver 3

procedure processone;
 begin

while true do
 begin
 p1wantsin := true;
 while p2wantsin do;
 criticalsectionone;
 p1wantsin := false;
 otherstuffone;
 end

 end

procedure processtwo;
 begin

while true do
 begin
 p2wantsin := true;
 while p1wantsin do;
 criticalsectiontwo;
 p2wantsin := false;
 otherstufftwo;
 end

 end

• Deadlock can occur if both sets flag at the same time

 ==> Need a way to break out of loops…..

Shared boolean: p1wantsin <= false, p2wantsin <= false;

CS 3204 - Arthur 9

Wherein Lies the Problem?
n Problem stems from interruption of software-based

process while executing critical code (low-level)
n Solution

n Identify critical section
n Disable interrupts while in Critical Section

/* Program for P2 */

DisableInterrupts();

Balance = balance - amount;

EnableInterrupts();

CS

/* Program for P1 */

DisableInterrupts();

balance = balance + amount;

EnableInterrupts();
CS

shared double balance;

CS 3204 - Arthur 10

Using Interrupts…

n This works BUT…
n Allows process to disable interrupts for arbitrarily long time

n What if I/O interrupt needed ?

n What if one of the processes is in infinite loop inside the
Critical Section

n Let’s examine the use of Shared Variables again….

CS 3204 - Arthur 11

Using Shared Variable to Synchronize

/* Program for P1 */
..
/* Acquire lock */
while(lock) {NULL;};
lock = TRUE;
/* Execute critical section */
balance = balance + amount;
/* Release lock */
lock = FALSE;
..

/* Program for P2 */
..
/* Acquire lock */
while(lock) {NULL;};
lock = TRUE;
/* Execute critical section */
balance = balance - amount;
/* Release lock */
lock = FALSE;
..

shared boolean lock <= FALSE;
shared float balance;

lock == FALSE
 => No process in CS
 => Any process can enter CS

lock == TRUE
 => One process in CS
 => No other process admitted to CS

CS 3204 - Arthur 12

Synchronizing Variable…

n What if P1 interrupted after lock Set to TRUE
 => P2 cannot execute past while does hard wait
 => Wasted CPU time

n What if P1 interrupted after Test, before Set
 => P1 & P2 can be in the CS at the same time !!!

n Wasted CPU time is bad, but tolerable…..
Critical Section Violation cannot be tolerated

 ==> Need Un-interruptable “Test & Set” operation

CS 3204 - Arthur 13

Un-interruptable Test & Set

enter(lock) {

 disableInterrupts();

 /* Loop until lock TRUE */

 while (lock) {

 /* Let interrupts occur */

 enableInterrupts();

 disableInterrupts();

 }

 lock = TRUE;

 enableInterrupts();

}

exit(lock) {

 disableInterrupts();

 lock = FALSE;

 enableInterrupts();

}

Enable interrupts so that
the OS, I/O can use them

Re-disable interrupts when
ready to test again

CS 3204 - Arthur 14

Un-interruptable Test & Set…

n Note
n CS is totally bounded by enter/exit
n P2 can still wait (waisted CPU cycles) if P1 is interupted after

setting lock (i.e., entering critical section), but
n Mutual exclusion is achieved!!!!!

n Does not generalize to multi-processing

P1

enter(lock);

 balance = balance + amount;

exit(lock);

P2

enter(lock);

 balance = balance - amount;

exit(lock);
CSCS

n Solution

CS 3204 - Arthur 15

Protecting Multiple Components

/* Program for P1 */

enter(listLK);
 <delete element>;
exit(listLK);

 <intermediate comp.>;

enter(lngthLK);
 <update length>;
exit(lngthLK);

n Use enter/exit to update structure with 2 pieces if information
n But try to minimize time component locked out

Shared: list L,
 boolean ListLK <= False;
 boolean LngthLK <= False;

/* Program for P2 */

enter(lngthLK);
 <update length>;
exit(lngthLK);

<intermediate comp.>;

enter(listLK);
 <delete element>;
exit(listLK);

CS 3204 - Arthur 16

/* Program for P1 */

enter(listLK);
 <delete element>;
exit(listLK);

 <intermediate comp.>;

enter(lngthLK);
 <update length>;
exit(lngthLK);

Suppose: P1... ; P2 runs & finishes; P1 …….
Any access to lngth vble during “intermediate comp.” will be incorrect !!!
=> Programming Error: List and variable need to be updated together

Protecting Multiple Components: 1st try
Shared: list L,
 boolean ListLK <= False;
 boolean LngthLK <= False;

/* Program for P2 */

enter(lngthLK);
 <update length>;
exit(lngthLK);

 <intermediate comp.>;

enter(listLK);
 <delete element>;
exit(listLK);

CS 3204 - Arthur 17

n Suppose: P1... ;
 P2 runs to ⊗ and blocks ;
 P1 starts & blocks on “enter”

 => DEADLOCK

/* Program for P1 */

enter(listLK);
 <delete element>;
 <intermediate comp.>;

enter(lngthLK);
 <update length>;
exit(listLK);
exit(lngthLK);

Protecting Multiple Components: 2nd try
Shared: list L,
 boolean ListLK <= False;
 boolean LngthLK <= False;

/* Program for P2 */

enter(lngthLK);
 <update length>;

 <intermediate comp.>;

enter(listLK)
 <delete element>;
exit(lngthLK);
exit(listLK);

CS1

CS2

CS2

CS1

⊗

CS 3204 - Arthur 18

Deadlock

n Deadlock
n When 2 or more processes get into a state whereby each is

holding a resource requested by the other

P1 requests and gets R 1
interrupt
P2 requests and gets R 2
interrupt
P1 requests R2 and blocks
P2 requests R1 and blocks

R1

R2

P1 P2

P1
.
Request Resource1
.
Request Resource2
.

P2
.
Request Resource2
.
Request Resource1
.

CS 3204 - Arthur 19

Solution to Synchronization

n The previous examples have illustrated 2 methods for
synchronizing / coordinating processes
n Interrupt
n Shared variable

n Each has its own set of problems
n Interrupt

n May be disabled for too long
n Shared variable

n Test, then set – interruptable
n Non-interruptable – gets complex

n Dijkstra introduces a 3rd and much more preferable
method
n Semaphore

CS 3204 - Arthur 20

Semaphore

n Dijkstra, 1965

n Synchronization primitive with no busy waiting

n It is an integer variable changed or tested by one of
the two indivisible operations

n Actually implemented as a protected variable type
var x : semaphore

CS 3204 - Arthur 21

Semaphore operations

n P operation (“wait”)
n Requests permission to use a critical resource

S := S – 1;
if (S < 0) then

put calling process on queue

n V operation (“signal”)
n Releases the critical resource

S := S + 1;
if (S <= 0) then

remove one process from queue

n Queues are associated with each semaphore variable

CS 3204 - Arthur 22

Semaphore : Example

Critical resource T

Semaphore S ß initial_value
Processes A,B

Process B
.

P(S);

<CS> /* access T */

V(S);

.

Process A
.

P(S);

<CS> /* access T */

V(S);

.

CS 3204 - Arthur 23

Semaphore : Example…

var S : semaphore ß 1

Queue associated with S

Value of S : 1

Process A
P(S);

<CS>

V(S);

Process B
P(S);

<CS>

V(S);

Process C
P(S);

<CS>

V(S);

CS 3204 - Arthur 24

Types of Semaphores

n Binary Semaphores
n Maximum value is 1

n Counting Semaphores
n Maximum value is greater than 1

n Both use same P and V definitions

n Synchronizing code and initialization determines what
values are needed, and therefore, what kind of
semaphore will be used

CS 3204 - Arthur 25

(1) P1 => P(mutex)
 Decrements; <0 ?; NO (0);
 P1 Enters CS;
 P1 interrupted

(2) P2 => P(mutex)
 Decrements; <0 ?; YES (-1)
 P2 blocks on mutex

Using Semaphores

proc_1() {
 while(true) {
 <compute section>;
 P(mutex);
 <critical section>;
 V(mutex);
 }
 }

proc_2() {
 while(true) {
 <compute section>;
 P(mutex);
 <critical section>;
 V(mutex);
 }
 }

Shared semaphore mutex <= 1;

(3) P1 finishes CS work
 P1 => V(mutex);

 Increments; <=0 ?; YES (0)
 P2 woken & proceeds

Non-Interruptable “Test & Sets”

CS 3204 - Arthur 26

Using Semaphores - Example 1

proc_0() {
...
P(mutex);
balance = balance + amount;
V(mutex);
...
}

proc_1() {
…
P(mutex);
balance = balance - amount;
V(mutex);
...
}

Shared semaphore mutex <= 1;

Note: Could use Interrupts to implement solution,
 But (1) with interrupts masked off, what happens if
 a prior I/O request is satisfied
 (2) Interrupt approach would not work on Multiprocessor

Suppose P1 issues P(mutex) first ……

Suppose P2 issues P(mutex) first …… No Problem

CS 3204 - Arthur 27

Using Semaphores – Example 2

n Cannot use Interrupt disable/enable here because we have multiple
distinct synchronization points

n Interrupt disable/enable can only distinguish 1 synchronization event
n Therefore, 2 Semaphores

proc_B() {
 while(true) {
 P(s1);
 read(x);
 <compute B1>;
 write(y);
 V(s2);
 <compute B2>;
 }
}

B blocks
till A signals

B signals A
that “write to
y” has
completed

proc_A() {
 while(true) {
 <compute A1>;
 write(x);
 V(s1);
 <compute A2>;
 P(s2);
 read(y);
 }
}

A blocks
until B signals

A signals B
that “write to
x” has
completed

Shared semaphore: s1 <= 0, s2 <= 0; Note: values started at 0… ok?

CS 3204 - Arthur 28

Using Hardware Test & Set [TS(s)] to
Implement Binary Semaphore “Semantics”

boolean s = FALSE;
...
while(TS(s));
<critical section>
S = FALSE;
...

n TS(s)
n Test s
n Set s to True
n Return original value

Note: No actual queueing, each process just “hard waits”

semaphore s = 1;
...
P(s);
<critical section>
V(s);
...

Uninterruptable

≡?

CS 3204 - Arthur 29

Counting Semaphores

n Most of our examples have only required Binary
Semaphore
n Only 0 or 1 values

n But synchronization problems arise that require a
more general form of semaphores

n Use counting semaphores
n Values : non-negative integers

CS 3204 - Arthur 30

Classical Problems

n Producer / Consumer Problem

n Readers – Writers Problem

CS 3204 - Arthur 31

Producer / Consumer Problem (Classic)

n Critical resource
n Set of message buffers

n 2 Processes
n Producer : Creates a message and places it in the buffer
n Consumer : Reads a message and deletes it from the buffer

n Objective
n Allow the producer and consumer to run concurrently

CS 3204 - Arthur 32

P/C…

n Constraints
n Producer must have a non-full buffer to put its message into
n Consumer must have a non-empty buffer to read
n Mutually exclusive access to Buffer pool

n Unbounded Buffer problem
n Infinite buffers
n Producer never has to wait
n Not interesting nor practical

n Bounded Buffer Problem
n Limited set of buffers

CS 3204 - Arthur 33

P/C - Solution

Shared Full: semaphore ß 0;
 Empty semaphore ß MaxBuffers;
 MEPC: semaphore ß 1;

Begin
...
P(Empty);
P(MEPC);
<add item to buffer>
V(MEPC);
V(Full);
...
End;

Begin
...
P(Full);
P(MEPC);
<remove item from buffer>
V(MEPC);
V(Empty);
...
End;

Producer Consumer

X

X

XX

CS 3204 - Arthur 34

P/C – Another Look

Producer

Consumer

Pool of empty
Baskets

Pool full of Baskets

CS 3204 - Arthur 35

P/C – Another Look

n 9 Baskets – Bounded

n Consumer – Empties basket
n Can only remove basket from Full Pool, if one is there

=> Need “full” count
n Emptys basket and places it in Empty pool

n Producer – Fills basket
n Can only remove basket from Empty pool, if one is there

=> Need “empty” count
n Fills basket and places it in Full pool

CS 3204 - Arthur 36

P/C - Another Look

producer() {
 buf_type *next, *here;
 while(True) {
 produce_item(next);
 P(empty); /*Claim empty buffer*/
 P(Emutex); /*Manipulate the pool*/
 here = obtain(empty);
 V(Emutex);
 copy_buffer(next, here);
 P(Fmutex); /*Manipulate the pool*/
 release(here, fullpool);
 V(Fmutex); /*Signal full buffer*/
 V(full);
 }
}

consumer() {
 buf_type *next, *here;
 while(True) {
 P(full); /*Claim full buffer*/
 P(Fmutex); /*Manipulate the pool*/
 here = obtain(full);
 V(Fmutex);
 copy_buffer(here, next);
 P(Emutex); /*Manipulate the pool*/
 release(here, emptypool);
 V(Enmutex); /*Signal empty buffer*/
 V(empty);
 consume_item(next);
 }
}

Shared semaphore: Emutex = 1, Fmutex = 1; full = 0, empty = 9;
Shared buf_type: buffer[9];

CS 3204 - Arthur 37

P/C - Example

n How realistic is PCP scenario?
n Consider a circular buffer

n 12 slots
n Producer points at next one it

will fill
n Consumer points at next one it

will empty

Producer

Consumer

n Don’t want :
Producer = Consumer
=> (1) Consumer “consumed” faster than
 producer “produced”, or
 (2) Producer “produced” faster than
 consumer “consumed”.

Do we need to

synchronize

access to buffer?

CS 3204 - Arthur 38

P/C – Real World Scenario

n CPU can produce data faster than terminal can
accept or viewer can read

TerminalCPU

Communication buffers in both

Xon/Xoff Flow Control

CS 3204 - Arthur 39

Readers / Writers Problem (Classic)

n Multiple readers of the same file?
n No problem

n Multiple writers to the same file?
n Might be a problem writing same record

=> Potentially a “lost update”
n Writing while reading

n Might be a problem – read might occur while being written
=> Inconsistent data

R, R, R, R W, W,W
file

CS 3204 - Arthur 40

Readers – Writers Problem

n Critical resource
n File

n Consider multiple processes which can read or write
to the file

n What constraints must be placed on these processes?
n Many readers may read at one time
n Mutual exclusion between readers and writers
n Mutual exclusion between writers

CS 3204 - Arthur 41

Strong Reader Solution

reader(){
 while(TRUE) {
 P(mutexRC);
 readCount = readCount + 1;
 if (readCount == 1)
 P(writeBlock);
 V(mutexRC);
 access_file;
 P(mutexRC);
 readCount = readCount – 1;
 if (readCount == 0)
 V(writeBlock);
 V(mutexRC);
 }
}

writer(){
 while(TRUE) {
 P(writeBlock);
 access_file;
 V(writeBlock);
 }
}

Shared int: readCount = 0;
 semaphore: mutexRC = 1, writeBlock = 1;

This solution gives preference to
Readers

If a reader has access to file and other
readers want access, they get it... all
writers must wait until all readers are

done

CS 3204 - Arthur 42

Reader / Writers – Ver 2

n Create a Strong Writer

n Give priority to a waiting writer

n If a writer wishes to access the file, then it must be
the next process to enter its critical section

CS 3204 - Arthur 43

Strong Writers Solution

reader(){
 while(TRUE) {
 P(writePending);
 P(readBlock);
 P(mutex1);
 readCount = readCount + 1;
 if (readCount == 1) then
 P(writeBlock);
 V(mutex1);
 V(readBlock);
 V(writePending);
 access file;
 P(mutex1);
 readCount = readCount – 1;
 if (readCount == 0) then
 V(writeBlock);
 V(mutex1);
 }
}

writer(){
 while(TRUE) {
 P(mutex2);
 writeCount = writeCount + 1;
 if (writeCount == 1) then
 P(readBlock);
 V(mutex2);
 P(writeBlock);
 access file;
 V(writeBlock);
 P(mutex2);
 writeCount = writeCount - 1;
 if (writeCount == 0) then
 V(readBlock);
 V(mutex2);
 }
}

Shared int: readCount = 0, writeCount = 0
 semaphore: mutex1 = 1, mutex2 = 1, readBlock = 1, writePending = 1, writeBlock = 1;

CS 3204 - Arthur 44

Implementing Counting Semaphores
struct sempahore {
 int value = <initial value>;
 boolean mutex = FALSE;
 boolean hold = TRUE;
};
Shared struct semaphore s;

P(struct sempahore s) {
 while(TS(s.mutex));
 s.value = s.value – 1;
 if (s.value < 0) {
 s.mutex = FALSE;
 while(TS(s.hold));
 }
else {
 s.mutex = FALSE;
}

V(struct sempahore s) {
 while(TS(s.mutex));
 s.value = s.value + 1;
 if (s.value <= 0) {
 while(!s.hold);
 s.hold = FALSE;
 }
 s.mutex = FALSE;
}

