Chapter 6

* Process Management

Introduction

= Scenario
= One process running
= One/more process performing 1/0
= One/more process waiting on resources

= Most of the complexity stems from the need
to manage multiple processes

Fall 1999 : CS 3204 - Arthur 2

Introduction

= Process Manager
= CPU sharing
= Process synchronization
= Deadlock prevention

= Each process has a Process Descriptor
= Describes complete environment for a process

Fall 1999 : CS 3204 - Arthur

Process Descriptor

FIRLD BEECRIPTION
-I_n-n:r-r;a;I pm-ct;- AT A dmiernal nams of the gocess, guch &5 a0 inegeT or WHio e
viged i TG OpaEaTing ayanen o,
Brane Tise provens s curment ciis.
_mt;'. —— A procesx hee an cwmen [identified by ihe oamacs il

inlarkilication oot e the Jogin neama). The deacripios conialog a feld
for storing the cwner K enbiollons

Pamnt pracam A poineey to the proteay descriplor of thin proceass’s parent
dsmpriptor

Lixt ol child process A pointer oo & L0 of the chill prrocemssaes of o pencsss

distriptoos

Lt o renmanhles P peAnter o A S of reusalle raselEck TVpae Bald by the peocess. Each

TR rapcurnn sypn will De & desoripbor of e pumbees of umits of tha
rumzuroa.

Lisit o8 earrummbin Simmikar to the rausable repcurms TSl @es Seotian G5 2],

[ESOLINOES

Lisst of [l diosoriy loes A specisl cnsa of tha TeaEshls resource 18t

Mibssug queas & mpecind cass of the consumable resournoe ilac

Prequcticn domain A descriprion of thie aooess QI curenily hedd by the proomess (s
Chapier 14)

CPLU aisius reglstar A oopy of ach of e CFU SCA00S Mogiaties At the st Homs the proosss

naedmng aacited (RS FOnTkng ol

CPU goriaral maglarar Acpy ol aach of Hua CPU geaneal engisteTs ng the Dnet fima fh pronos

OOETIE easied Chie puEnaiaeg sato.

Fall 1999 : CS 3204 - Arthur

Process Address Space

= Defines all aspects of process computation
= Program
= Variables

= Address space is generated/defined by
translation

Fall 1999 : CS 3204 - Arthur

Creating an executable program

Separate objects
each relative to 0

Smuree
Modulss

Translaic

One large program
/ 0-X
Ll

Alrsiliile
Progran

d}* e

L Maps relative address space to physical
memory location

Y - (X+Y)

— Relocates modules one behind other
Generates separate => Relocates addresses of all but first
object code modules => Resolves external reference to
library calls and external modules

Fall 1999 : CS 3204 - Arthur

Basic Memory Hierarchy

A

Fastest i = = || %]

i) Cache memory

Fr Ty Memomy, b4

Access Speed

Aecordane K anyg, A 1

Slowest

Fall 1999 : CS 3204 - Arthur 7

Basic Memory Hierarchy...

= At any point in the same program, element can be in

= Secondary memory Ms
= Primary memory Mp
= Registers Mr

= Consistency is a Problem
= Ms! Mpl Mg (code vs data)
= When does one make them consistent ?
= How?

Fall 1999 : CS 3204 - Arthur 8

Consistency Problem

= Scheduler switching out processes —Context Switch

= Is Instruction a Problem ???
= NO
= Instructions are never modified
= Separate Instruction and Data space
= Therefore, Mg; = Mp; = Ms;

How can an instruction be in a
register ?

Fall 1999 : CS 3204 - Arthur 9

Consistency Problem...

= Is Data a Problem ???

= YES
= Variable temporarily stored in register has value added to it

= Therefore, MRJ- 1 ij

= On context switch, all registers are saved
= Therefore, current state is saved

Fall 1999 : CS 3204 - Arthur 10

Sample Scenario...

Suppose MOV X Y Zinstruction is executed
= DMp, L Ms,

On context switch, is all of a process memory
flushed to Ms ?

= No, only on page swap

= Hence, enVprocess = (Mg +Ms) + (...)

= Note:
= Flushing of memory frees it up for incoming process
=> Page Swap

Fall 1999 : CS 3204 - Arthur 11

Process States

= Focus on Resource

Management & Process
Management Running

D

= Recall also that part of the
process environment is its ;

o A
state Blocked Ready

State Transition Diagram

Fall 1999 : CS 3204 - Arthur 12

Process States...

When process enters Ready “state, it must
compete for CPU. Memory has already
been allocated

Eunning <?>
Process has CPU D

requast
Process requests resource that is raquest &-w;luh-@
immediately available > NO blocking
e Py Sart
eI b
Process requests resource that is NOT yet Blocked Ready

available

State Transition Diagram

OBICIROR O

Resource allocated,
memory re-allocated?

Fall 1999 : CS 3204 - Arthur 13

Resources & Resource Manager

= 2 types of Resources
= Reusable (Memory)
= Consumable (Input/Time slice)

Eequest

Reicase

L » Resouroe

?r|.':|l'||'4"|,'|

Process requesting resource unit(s)

- Get it, or

Resource Quene

Units of Resource R
Resource Pocd

- Block => Stay in Queue

Fall 1999 : CS 3204 - Arthur 14

Resource Descriptor

= Each Resource R has a Resource Descriptor associated
with it (similar to the process)

=> there is a “Status’’for that Resource, and
=> a Resource Manager to manage it

FOIND UL @ NERULLUE LRI
FIELD DESCRIPTION
Iniemal resource | An mbernal name for the resource Ued by e opemting system code
B /dev/...
Tikal units The amber af units of this resouree fype conliqured o the aystem. 6
» Awadlable uniie | The niambesr af units currendly avadlabia 3
Liat of availshle The set of awailable units of this eaoucs type that are availabie lor uae by
ungs PrEEsses
| F A, B, C
Lesit of bioiied Thix likt of processes that bave o pending recgoeest foy units of this e
ProcRssng | b Onlyif*=0
Fall 1999 : CS 3204 - Arthur 15

Process Hierarchy

shell

= Conceptually, this is the way in which we would like
to view it

= Root controls all processes i.e. Parent

Fall 1999 : CS 3204 - Arthur 16

Creating Processes

Parent Process needs ability to
= Block child

= Activate child

= Destroy child

= Allocate resources to child

True for User processes spawning child
True for OS spawning i nit, getty, etc.
Process hierarchy a natural,

if f or k/exec commands exist

Fall 1999 : CS 3204 - Arthur 17

UNIX f or k command

s For Kunix

= Shares text
= Shares memory
= Has its own address space

= Cannot communicate with parent by referring variable
stored in code

= Earlier definition: For Kconway
= Shares text
= Shares resources
= Shares address space
= Process can communicate thru variables declared in code

Fall 1999 : CS 3204 - Arthur 18

Cooperating Processes

Prog
proc_ AC){ proo B L
X,y :int whila(TRUE] | while (TROE} |
{computa section ALD: retrieyve{x)
Porc A i b
refx &y updata(x); fcompiute Section RIY;
[Proc B <compute gectien A23; updatelvh:
ref x & o b
y cetrlevely); Loompite seotion BAD:
Fork “A””]
Fork “B””
\

Now processes A & B, share address space & can
communicate thru declared variables

Problem 22?2

A can write 2 times before B reads

Fall 1999 : CS 3204 - Arthur 19

Synchronizing Access to Shared Variables

Prog
= Shared address space allows
communication through declared X,y :int
variables automatically [Porc A
refx &y
. [Proc B
= How then, can we synchronize access refx &y
to them? Fork “A”
Fork “B””
L N \
= Need Sychronization Primitives
=> JOIN & QUIT
Fall 1999 : CS 3204 - Arthur 20

10

Fork, Join & Quit - Conway

= In addition to the “Fork(proc)’>’command, Conway

also defined system calls to support process
synchronization

= Join (count)
= Un-interruptable
Decrement count;
if count ! O then Quit, else Continue

[QUit
=« Terminate process

Fall 1999 : CS 3204 - Arthur

21

Fork, Join, Quit example

L saunt = I;
Coompute A1
writa(x);
FORK {LZ) ;
Loompute AZZ;

Ll: JOIM[count);
cead {¥w) ;
QUETC)

2: read{x):
“computa Bl2g
write(y):
EORK (L3} ;

goto L1

Li: toompute BEH:

goto Lz

Fall 1999 : CS 3204 - Arthur

R(X)
<Bl> <A2>
w(v)

R(Y) <B2>

22

11

A Simple Parent Program (Reuvisit)

it Lude Layalwait h>

fdefina HULL i}

int main (weid]{
if (foxk() = = 01(#* Thi= is the child proceas °f

axecvel "child" WULL.HULL):

exit (Dh: /= Should never get here, terminare */
1
* PFaremt code hers *f
printf{"Process [%d] : Farent in axecutdon ...\n®, getpid(i);
slanp(2]:

if{wadic (HOLLY > a) J* Child tecminating */

printf("Procass[%d] : Parent detects terminating child ‘n",
getpid():
printf{"Process [%d]: Par=nt terminating Snm, gerpdddi
1
Fall 1999 : CS 3204 - Arthur 23

Spawning A Child Different From Parent

= Suppose we wish to spawn a child that is different
from the parent
fork
execve(..)

= OS=>init = getty = shell

shell

getty

init

e

0S

Fall 1999 : CS 3204 - Arthur 24

12

Factoring in additional Control Complexities

= Recall:
= A parent process can suspend a child process

= Therefore, if a child is in run state and goes to ready
(time slice up), and the parent runs and decides to
suspend the child, then how do we reflect this in the
process state diagram ???

= We need 2 more states
= Ready suspended
= Blocked suspended

Fall 1999 : CS 3204 - Arthur 25

Process State diagram reflecting Control
i Runming
e - Not Blocked
ety v - Suspended
Start i i - No memory
s1E pend LA
e |
activatae "
- Not blocked read i ctive readyEuspended
- Not suspended allocate Allecate
- Has memory et guspand Y — | - Blocked
4 e —— l_h_’,.-' ™ - Suspended
 Blocked blockedActive blocked Suspended - No memory
- Not suspended
- No memory
Fall 1999 : CS 3204 - Arthur 26

13

Give it a thought...

Why can a process NOT go from
Ready Active to Blocked Active ~
or Blocked Suspended *?

Fall 1999 : CS 3204 - Arthur

27

14

