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Chapter 6

     Process Management
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Introduction

n Scenario
n One process running
n One/more process performing I/O
n One/more process waiting on resources

n Most of the complexity stems from the need
to manage multiple processes
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Introduction

n Process Manager
n CPU sharing
n Process synchronization
n Deadlock prevention

n Each process has a Process Descriptor
n Describes complete environment for a process
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Process Descriptor
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Process Address Space

n Defines all aspects of process computation
n Program
n Variables
n …

n Address space is generated/defined by
translation
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Creating an executable program

Maps relative address space to physical
memory location

Relocates modules one behind other
è  Relocates addresses of all but first
è  Resolves external reference to

library calls and external modules

Generates separate
object code modules

Separate objects
each relative to 0

One large program
0 - X

Y - (X+Y)
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Basic Memory Hierarchy

Fastest

Slowest

Access Speed

Cache memory
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Basic Memory Hierarchy…

n At any point in the same program, element can be in
n Secondary memory MS

n Primary memory MP

n Registers MR

n Consistency is a Problem
n MS ≠ MP ≠ MR         (code vs data)
n When does one make them consistent ?
n How ?
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Consistency Problem

n Scheduler switching out processes – Context Switch
n Is Instruction a Problem ???

n NO
n Instructions are never modified
n Separate Instruction and Data space
n Therefore, MRj = MPj = MSj

How can an instruction be in a
register ?

Fall 1999 : CS 3204 - Arthur 10

Consistency Problem…

n Is Data a Problem ???
n YES
n Variable temporarily stored in register has value added to it
n Therefore, MRj ≠ MPj

n On context switch, all registers are saved
n Therefore, current state is saved
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Sample Scenario…
n Suppose ‘MOV X Y’ instruction is executed

n èMPy ≠ Msy

n On context switch, is all of a process’ memory
flushed to MS ?
n No, only on page swap

n Hence, envprocess = (MR +MS) + (…)

n Note:
n Flushing of memory frees it up for incoming process

=> Page Swap
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Process States

n Focus on Resource
Management & Process
Management

n Recall also that part of the
process environment is its
state

State Transition Diagram
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Process States…
When process enters ‘Ready’ state, it must

compete for CPU. Memory has already
been allocated

Process has CPU

Process requests resource that is
immediately available àNO blocking

Process requests resource that is NOT yet
available

Resource allocated,
memory re-allocated?
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State Transition Diagram
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Resources & Resource Manager

n 2 types of Resources
n Reusable (Memory)
n Consumable (Input/Time slice)

Units of Resource RProcess requesting resource unit(s)

à  Get it, or

à  Block => Stay in Queue



8

Fall 1999 : CS 3204 - Arthur 15

Resource Descriptor

n Each Resource R has a Resource Descriptor associated
with it (similar to the process)
=> there is a “Status” for that Resource, and
=> a Resource Manager to manage it

/dev/...

6
3

A, B, C

Only if * = 0

*
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Process Hierarchy

getty

shell

init

OS

n Conceptually, this is the way in which we would like
to view it

n Root controls all processes i.e. Parent
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Creating Processes

n Parent Process needs ability to
n Block child
n Activate child
n Destroy child
n Allocate resources to child

n True for User processes spawning child
n True for OS spawning init, getty, etc.
n Process hierarchy a natural,

if fork/exec commands exist
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UNIX fork command
n ForkUNIX

n Shares text
n Shares memory
n Has its own address space
n Cannot communicate with parent by referring variable

stored in code

n Earlier definition: ForkConway

n Shares text
n Shares resources
n Shares address space
n Process can communicate thru variables declared in code
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Cooperating Processes

Now processes A & B, share address space & can
communicate thru declared variables

Problem ???

 A can write 2 times before B reads

x, y : int

Fork “A”

Fork “B”

Prog

Porc A
   ref x & y

Proc B
   ref x & y
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Synchronizing Access to Shared Variables

n Shared address space allows
communication through declared
variables automatically

n How then, can we synchronize access
to them?

n Need Sychronization Primitives

=> JOIN & QUIT

x, y : int

Porc A
   ref x & y

Proc B
   ref x & y

Fork “A”

Fork “B”

Prog
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Fork, Join & Quit - Conway

n In addition to the “Fork(proc)” command, Conway
also defined system calls to support process
synchronization

n Join (count)
n Un-interruptable

Decrement count;
if count ≠ 0 then Quit, else Continue

n Quit
n Terminate process

Fall 1999 : CS 3204 - Arthur 22

Fork, Join, Quit example
Cnt ß  2

    <A1>

        w(X)
<A2>

Cnt ≠ 0

r(y)

r(x)
<B1>

w(y)

r(y) Cnt ≠ 0

<B2>

Cnt ß  2

    <A1>

          w(X)

L2

L2

L3

L0

L0

Code Repeats

<A1>
W(x)
----------------
R(x)
<B1>   <A2>
W(Y)
----------------
R(Y)    <B2>
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A Simple Parent Program (Revisit)
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Spawning A Child Different From Parent

n Suppose we wish to spawn a child that is different
from the parent

fork
execve(…)

n OS è  init è getty è shell

OS

init

getty

shell
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Factoring in additional Control Complexities

n Recall:
n A parent process can suspend a child process

n Therefore, if a child is in run state and goes to ready
(time slice up), and the parent runs and decides to
suspend the child, then how do we reflect this in the
process state diagram ???

n We need 2 more states
n Ready suspended
n Blocked suspended
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Process State diagram reflecting Control

- Not blocked

- Not suspended

- Has memory

- Blocked

- Not suspended

- No memory

- Blocked

- Suspended

- No memory

- Not Blocked

- Suspended

- No memoryStart
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Give it a thought…

Why can a process NOT go from
‘Ready Active’ to ‘Blocked Active’

or ‘Blocked Suspended’ ?


