
1

Chapter 6

 Process Management

Fall 1999 : CS 3204 - Arthur 2

Introduction

n Scenario
n One process running
n One/more process performing I/O
n One/more process waiting on resources

n Most of the complexity stems from the need
to manage multiple processes

2

Fall 1999 : CS 3204 - Arthur 3

Introduction

n Process Manager
n CPU sharing
n Process synchronization
n Deadlock prevention

n Each process has a Process Descriptor
n Describes complete environment for a process

Fall 1999 : CS 3204 - Arthur 4

Process Descriptor

3

Fall 1999 : CS 3204 - Arthur 5

Process Address Space

n Defines all aspects of process computation
n Program
n Variables
n …

n Address space is generated/defined by
translation

Fall 1999 : CS 3204 - Arthur 6

Creating an executable program

Maps relative address space to physical
memory location

Relocates modules one behind other
è Relocates addresses of all but first
è Resolves external reference to

library calls and external modules

Generates separate
object code modules

Separate objects
each relative to 0

One large program
0 - X

Y - (X+Y)

4

Fall 1999 : CS 3204 - Arthur 7

Basic Memory Hierarchy

Fastest

Slowest

Access Speed

Cache memory

Fall 1999 : CS 3204 - Arthur 8

Basic Memory Hierarchy…

n At any point in the same program, element can be in
n Secondary memory MS

n Primary memory MP

n Registers MR

n Consistency is a Problem
n MS ≠ MP ≠ MR (code vs data)
n When does one make them consistent ?
n How ?

5

Fall 1999 : CS 3204 - Arthur 9

Consistency Problem

n Scheduler switching out processes – Context Switch
n Is Instruction a Problem ???

n NO
n Instructions are never modified
n Separate Instruction and Data space
n Therefore, MRj = MPj = MSj

How can an instruction be in a
register ?

Fall 1999 : CS 3204 - Arthur 10

Consistency Problem…

n Is Data a Problem ???
n YES
n Variable temporarily stored in register has value added to it
n Therefore, MRj ≠ MPj

n On context switch, all registers are saved
n Therefore, current state is saved

6

Fall 1999 : CS 3204 - Arthur 11

Sample Scenario…
n Suppose ‘MOV X Y’ instruction is executed

n èMPy ≠ Msy

n On context switch, is all of a process’ memory
flushed to MS ?
n No, only on page swap

n Hence, envprocess = (MR +MS) + (…)

n Note:
n Flushing of memory frees it up for incoming process

=> Page Swap

Fall 1999 : CS 3204 - Arthur 12

Process States

n Focus on Resource
Management & Process
Management

n Recall also that part of the
process environment is its
state

State Transition Diagram

7

Fall 1999 : CS 3204 - Arthur 13

Process States…
When process enters ‘Ready’ state, it must

compete for CPU. Memory has already
been allocated

Process has CPU

Process requests resource that is
immediately available àNO blocking

Process requests resource that is NOT yet
available

Resource allocated,
memory re-allocated?

1

2

3

4

5

5

4

3

2

1

State Transition Diagram

Fall 1999 : CS 3204 - Arthur 14

Resources & Resource Manager

n 2 types of Resources
n Reusable (Memory)
n Consumable (Input/Time slice)

Units of Resource RProcess requesting resource unit(s)

à Get it, or

à Block => Stay in Queue

8

Fall 1999 : CS 3204 - Arthur 15

Resource Descriptor

n Each Resource R has a Resource Descriptor associated
with it (similar to the process)
=> there is a “Status” for that Resource, and
=> a Resource Manager to manage it

/dev/...

6
3

A, B, C

Only if * = 0

*

Fall 1999 : CS 3204 - Arthur 16

Process Hierarchy

getty

shell

init

OS

n Conceptually, this is the way in which we would like
to view it

n Root controls all processes i.e. Parent

9

Fall 1999 : CS 3204 - Arthur 17

Creating Processes

n Parent Process needs ability to
n Block child
n Activate child
n Destroy child
n Allocate resources to child

n True for User processes spawning child
n True for OS spawning init, getty, etc.
n Process hierarchy a natural,

if fork/exec commands exist

Fall 1999 : CS 3204 - Arthur 18

UNIX fork command
n ForkUNIX

n Shares text
n Shares memory
n Has its own address space
n Cannot communicate with parent by referring variable

stored in code

n Earlier definition: ForkConway

n Shares text
n Shares resources
n Shares address space
n Process can communicate thru variables declared in code

10

Fall 1999 : CS 3204 - Arthur 19

Cooperating Processes

Now processes A & B, share address space & can
communicate thru declared variables

Problem ???

 A can write 2 times before B reads

x, y : int

Fork “A”

Fork “B”

Prog

Porc A
 ref x & y

Proc B
 ref x & y

Fall 1999 : CS 3204 - Arthur 20

Synchronizing Access to Shared Variables

n Shared address space allows
communication through declared
variables automatically

n How then, can we synchronize access
to them?

n Need Sychronization Primitives

=> JOIN & QUIT

x, y : int

Porc A
 ref x & y

Proc B
 ref x & y

Fork “A”

Fork “B”

Prog

11

Fall 1999 : CS 3204 - Arthur 21

Fork, Join & Quit - Conway

n In addition to the “Fork(proc)” command, Conway
also defined system calls to support process
synchronization

n Join (count)
n Un-interruptable

Decrement count;
if count ≠ 0 then Quit, else Continue

n Quit
n Terminate process

Fall 1999 : CS 3204 - Arthur 22

Fork, Join, Quit example
Cnt ß 2

 <A1>

 w(X)
<A2>

Cnt ≠ 0

r(y)

r(x)
<B1>

w(y)

r(y) Cnt ≠ 0

<B2>

Cnt ß 2

 <A1>

 w(X)

L2

L2

L3

L0

L0

Code Repeats

<A1>
W(x)

R(x)
<B1> <A2>
W(Y)

R(Y) <B2>

12

Fall 1999 : CS 3204 - Arthur 23

A Simple Parent Program (Revisit)

Fall 1999 : CS 3204 - Arthur 24

Spawning A Child Different From Parent

n Suppose we wish to spawn a child that is different
from the parent

fork
execve(…)

n OS è init è getty è shell

OS

init

getty

shell

13

Fall 1999 : CS 3204 - Arthur 25

Factoring in additional Control Complexities

n Recall:
n A parent process can suspend a child process

n Therefore, if a child is in run state and goes to ready
(time slice up), and the parent runs and decides to
suspend the child, then how do we reflect this in the
process state diagram ???

n We need 2 more states
n Ready suspended
n Blocked suspended

Fall 1999 : CS 3204 - Arthur 26

Process State diagram reflecting Control

- Not blocked

- Not suspended

- Has memory

- Blocked

- Not suspended

- No memory

- Blocked

- Suspended

- No memory

- Not Blocked

- Suspended

- No memoryStart

14

Fall 1999 : CS 3204 - Arthur 27

Give it a thought…

Why can a process NOT go from
‘Ready Active’ to ‘Blocked Active’

or ‘Blocked Suspended’ ?

