Chapter 1

Introduction

What is an Operating System (OS) ?

- Definition 1:
 - An OS is the interface between the hardware and the software environment

- Definition 2:
 - An OS is a resource manager – provides “resource abstraction”

- In fact, it achieves 1 through 2.
- Therefore, both definitions are applicable at some times.
System Software and the OS interface

Resource Abstraction

- How does the OS "manage resources"?
 - By providing Resource Abstraction to the other system software and applications
- What is Abstraction?
 - Abstraction hides the details
- Resource Abstraction
 - hides the “nitty-gritty” details of the underlying resource
Resource Abstraction ... an example

(Consider the C language statement `fprintf`)

\[
\begin{align*}
\text{fprintf} \ (\text{fileId}, \ "\%d\", \ \text{var1}) \\
\Downarrow \\
\text{write} \ (\text{block}, \ 100, \ \text{device}, \ 266, \ 9) \\
\Downarrow \\
\text{load} \ (\text{block}, \ 100, \ \text{device}) \\
\text{seek} \ (\text{device}, \ 266) \\
\text{out} \ (\text{device}, \ 9)
\end{align*}
\]

Multi-level abstraction

Resource Abstraction

- Typical resource abstractions
 - Memory
 - Disk
 - Keyboard
 - Monitor
Resource Sharing

- Managing resources through abstractions implies the ability to ‘share resources’

Types of Sharing:

- Space Multiplexed
 - Divided into 2 or more distinct units of resource
 - Example: disk, memory

- Time multiplexed
 - Exclusive control for a short period of time
 - Example: processor

Resource Sharing

- Multiple processors accessing same resource concurrently

- Isolation: only one processor has access at any given time
Terminology

- **Concurrency**
 - The simultaneous execution of different programs
 - **Types of Concurrency**
 - **Physical** – multiple processors
 - Example: CPU, I/O
 - **Logical** – interleaved execution
 - Example: processes

- **Multiprogramming**
 - The concurrent execution of multiple programs on a single processor
 - Could be space-multiplexed into memory and time-multiplexed in processors

- **Problems:**
 - Simultaneous access to memory
 - Lost updates

OS Strategies

- **Batch**
- **Time share**
- **PCs and Workstations**
- **Process Control & Real-time systems**
- **Networked**
Batch processing systems

- Sequentially loaded set of jobs
- Supported multiprogramming
- Jobs compete for Resources
 - 1st: memory
 - 2nd: processor
 - 3rd: ???
- No “real time” interaction between user and computer

Time share (1970s)

- Multiprogramming environment
- Multiple interactive users

Why time-share (TS)?
- To spread the cost of large machine
- To fully utilize computing power

TS provides each user with his/her own Virtual Machine
Time share system...

A Timesharing System

- Terminal Multiplexer
- VM
- VM
- VM
- Timesharing OS

Time share... ctd.

- TS eventually supported multitasking
 - Multitasking:
 - A time share system that support multiple processes per user, where.
 - A process is a “program in execution

- TS elevated the importance of
 - Need for barriers and safeguards among users and there processes - User/User & Process/Process
 - Memory protection
 - File Protection
Personal Computers (PCs) & Workstations

- Originally
 - Single User
 - Single Processor

- Now
 - Single or Multiple Users
 - Multiprogrammed

PCs Workstations... Evolution

- Earlier machines
 - Too large, too expensive, and too fast for one person

- Mini-computers
 - Smaller versions (like DEC PDP), yet they too grew in size

- Micro-computer
 - Single chip processor

- Workstation
 - Multiple user
 - Multiprogrammed
 - Multitasking
PCs & Workstations... Contribution

- Contributed to the growth of
 - Networking
 - Email
 - File server
 - Point and click interface
 - Like that in Mac and Windows

Process Control & Real time Systems

- Process Control Systems (PCS)
 - Single application monitoring one process
 - Example: System to monitor the heat of a liquid

- Real Time Systems (RTS)
 - Tied together Process Control Systems
Real Time Systems... type

- Hard RTS
 - Had timing constraints that COULD NOT be missed
 - Example: Chemical processes, Nuclear power plants, Defense systems

- Soft RTS
 - Make best effort to accommodate time constraints
 - Example: Transaction processing (ATM)

RTS: Tradeoff of generality of operations/functionality to ensure that deadlines can be made

Networks of Computers

- Problem is too large
 - Partition it among machines

- Communication exchange
 - Email
 - File transfers

- Servers
 - File
 - Printer
 - Database

- Provide access to non-local resources
 - LAN, WAN
 - Client / Server
Summary from the text book