
Text File I/O

Data Structures & Algorithms

1

CS@VT ©2009-2013 McQuain

The File Class

An abstract representation of file and directory pathnames.

Construction: File(String pathname)

Some useful methods:

boolean exists()

boolean createNewFile()

boolean delete()

long length()

Text File I/O

Data Structures & Algorithms

2

CS@VT ©2009-2013 McQuain

Working with Text Files

These remainder of these slides deal only with useful classes and methods for

reading/writing data in text files.

A text file is one in which all data values are represented as sequences of characters

(encoded in some common scheme like ASCII or Unicode).

A binary file is one in which all data values are represented by the same bit patterns used to

represent them in machine memory.

Text File I/O

Data Structures & Algorithms

3

CS@VT ©2009-2013 McQuain

FileWriter and FileReader

For writing sequentially to a text file, the FileWriter class is usually sufficient.

Construction: FileWriter(String fileName)

FileWriter(File file)

Some useful methods:

void write(char[] cbuf)

void write(char[] cbuf, int offset, int length)

void write(String str)

void flush()

void close()

Text File I/O

Data Structures & Algorithms

4

CS@VT ©2009-2013 McQuain

FileWriter and FileReader

For reading sequentially from a text file, the FileReader class is often sufficient.

Construction: FileReader(String fileName)

FileReader(File file)

Some useful methods:

int read()

int read(char[] cbuf)

int read(char[] cbuf, int offset, int length)

void close()

Text File I/O

Data Structures & Algorithms

5

CS@VT ©2009-2013 McQuain

The RandomAccessFile Class

Supports reading/writing to a random access file; extremely useful when you need to both

read and write the same file or when you need to seek to selected locations within a file and

then read or write there.

Construction: RandomAccessFile(File file, String mode)

RandomAccessFile(String name, String mode)

mode: “r” “rw” (“rws” “rwd”)

Logical view is that underlying file is a sequence (i.e., array) of bytes.

Each byte occurs at a unique offset from the beginning of the file.

Maintains an internal file pointer to the current location within the file.

Reads/writes advance the file pointer.

Writes at the end of the file cause the file to be extended.

Text File I/O

Data Structures & Algorithms

6

CS@VT ©2009-2013 McQuain

The RandomAccessFile Class

Some useful methods:

int read()

int read(byte[] b)

int read(char[] cbuf, int offset, int length)

String readLine()

void write(byte[] b)

void write(byte[] b, int offset, int length)

long length()

int getFilePointer()

void seek(long offset)

void close()

Be very careful about other methods… some work with two-byte representations and some

are intended for binary I/O.

Text File I/O

Data Structures & Algorithms

7

CS@VT ©2009-2013 McQuain

RandomAccessFile Example

public class rafExample {

public static void main(String[] args) {

try {

long offset = 0;

RandomAccessFile raf = new RandomAccessFile(args[0], "r");

//Get the position of the first record (should be 0):

offset = raf.getFilePointer();

//Grab first line (first complete record):

String record = raf.readLine();

//Tell the world:

System.out.println("The record offset is: " + offset);

System.out.println("The record is: " + record);

} catch (FileNotFoundException e) {

System.err.println(“Could not find file: " + args[0]);

} catch (IOException e) {

System.err.println("Writing error: " + e);

}

}

}

Text File I/O

Data Structures & Algorithms

8

CS@VT ©2009-2013 McQuain

The Scanner Class

A simple text scanner which can parse primitive types and strings using regular

expressions.

A Scanner breaks its input into tokens using a delimiter pattern, which by default

matches whitespace. The resulting tokens may then be converted into values of different

types using the various next methods.

Construction: Scanner(InputStream source)

Scanner(String source)

Configuration: useDelimiter(String pattern)

Text File I/O

Data Structures & Algorithms

9

CS@VT ©2009-2013 McQuain

The Scanner Class

Some useful methods:

String next()

byte nextByte()

int nextInt()

. . .

boolean hasNext() boolean hasNextByte()

boolean hasNextInt() boolean hasNextLine()

. . .

void close()

Text File I/O

Data Structures & Algorithms

10

CS@VT ©2009-2013 McQuain

Scanner Example

public class scannerExample {

public static void main(String[] args) {

String line = "foo\tbar\twidget";

Scanner s = new Scanner(line);

s.useDelimiter("\t");

String token1 = s.next();

String token2 = s.next();

String token3 = s.next();

System.out.println(token1 + " " + token2 + " " + token3);

}

}

