
Identifying Classes

 Data Structures & Algorithms

1

CS@VT ©2000-2015 McQuain

Analysis

The development process culminates in the creation of a system.

First we describe the system in terms of components, and describe those components in

terms of sub-components, and describe those . . .

This process requires applying the concept of abstraction, hiding details of components

that are irrelevant to the current design phase.

The process of component identification is top-down, decomposing the system into

successively smaller, less complex components.

This must be followed by a process of integration, which is bottom-up, building the

target system by combining small components in useful ways.

Identifying Classes

 Data Structures & Algorithms

2

CS@VT ©2000-2015 McQuain

Sobering Truths

Is design important? 75%-80% of system errors are created in the analysis and design

phases.

Analysis and design phases account for about only 10% of the overall system cost.

Only about 25% of software projects result in working systems.

(Perhaps you get what you pay for.)

WWMCCS network (Nov 9, 1979, possible global thermonuclear war)

Therac-25 Medical Linear Accelerator (1985-1987, >= 2 deaths)

Patriot Anti-missile Timing Bug (1991, 28 deaths, 98 wounded)

Identifying Classes

 Data Structures & Algorithms

3

CS@VT ©2000-2015 McQuain

Some SE Goals

Reusability

 develop components that can be reused in many systems

 portable and independent

 "plug-and-play" programming (libraries)

Extensibility

 support for external plug-ins (e.g., Eclipse, Photoshop)

Flexibility

 design so that change will be easy when data/features are added

 design so that modifications are less likely to break the system

 localize effect of changes

Identifying Classes

 Data Structures & Algorithms

4

CS@VT ©2000-2015 McQuain

OO Analysis

Think of building the system from parts, similar to constructing a machine.

Each part is an object which has its own attributes and capabilities and interacts with other

parts to solve the problem.

Identify classes of objects that can be reused.

Think in terms of objects and their interactions.

At a high level, think of an object as a thing-in-its-own-right, not of the internal structure

needed to make the object work.

Typical languages: Smalltalk, C++, Java, Eiffel

Identifying Classes

 Data Structures & Algorithms

5

CS@VT ©2000-2015 McQuain

OO and SE Goals

Objects and classes help programmers achieve a primary software-engineering goal:

reusability

A single class is used repeatedly to create multiple object instances.

More importantly, encapsulation prevents other developers from inadvertently modifying

an object’s data.

Separation allows different implementations to be used for an interface.

objects

classes

inheritance

templates

design patterns

Software

Structures

extensibility

flexibility

reusability

Software

Engineering Goals

Identifying Classes

 Data Structures & Algorithms

6

CS@VT ©2000-2015 McQuain

Identifying Objects and Classes

We must:

– identify potential objects from the specification

– eliminate phony candidates

– determine how the legitimate objects will interact

– extrapolate classes from the objects

This process:

– requires experience to do really well

– requires guidelines, none of which is entirely adequate

– often uses several approaches together

– should lead to too many rather than too few potential objects

Identifying Classes

 Data Structures & Algorithms

7

CS@VT ©2000-2015 McQuain

Identifying Objects and Classes

Abbott and Booch suggest:

– use nouns, pronouns, noun phrases to identify objects and classes

– singular object, plural class

– not all nouns are really going to relate to objects

Coad and Yourdon suggest:

– identify individual or group "things" in the system/problem

Ross suggests common object categories:

– people

– places

– things

– organizations

– concepts

– events

Identifying Classes

 Data Structures & Algorithms

8

CS@VT ©2000-2015 McQuain

Analysis: FileNavigation Specification

A little bit of Abbot and Booch yields some candidate objects/classes:

 - command file, GIS record file, log file

 - GIS record having parts: feature ID, name, type, latitude, longitude, etc.

 - geographic feature, geographic coordinate

 - (file) offset

 - command

There are other nouns and noun phrases that could be considered.

Identifying Classes

 Data Structures & Algorithms

9

CS@VT ©2000-2015 McQuain

Analysis: Map Candidates to Language

Some of these candidates appear to just map to Java language types:

 - command file, GIS record file, log file

 - GIS record having parts: feature ID, name, type, latitude, longitude, etc.

 - geographic feature, geographic coordinate

 - (file) offset

 - command

Long

String

FileWriter

RandomAccessFile

Identifying Classes

 Data Structures & Algorithms

10

CS@VT ©2000-2015 McQuain

Analysis: Map Candidates to Language

Other candidates should be user-defined types:

 - GIS record having parts: feature ID, name, type, latitude, longitude, etc.

 - geographic feature, geographic coordinate

 - command

Do these make sense logically?

Do they play an important role in the system?

class GISRecord

class Latitude

class Longitude

class GeoCoordinate

class Command

Do they promote flexibility and reusability?

Identifying Classes

 Data Structures & Algorithms

11

CS@VT ©2000-2015 McQuain

Analysis: FileNavigation Project

Reconsidering the specification and looking for roles that need to be played and implied

elements (Coad & Yourdon):

 - command file parser, GIS record file parser (interface abstractions)

 - command processor (event loop handler)

 - controller (organizer and driver)

Again, do these make sense within the context of the system?

Do they play important roles?

Do they promote flexibility and reusability?

Identifying Classes

 Data Structures & Algorithms

12

CS@VT ©2000-2015 McQuain

Objects for Abstraction/Localization

Some candidates provide abstract interfaces that localize constraints:

 - parser for the command file encapsulates the effect of command file formatting

 - parser for the GIS file does the same for the GIS record files

These will make it easier to deal with changes to external file specifications.

Identifying Classes

 Data Structures & Algorithms

13

CS@VT ©2000-2015 McQuain

offset

Objects for Abstraction/Localization

The effect of using a "front-end" for the data file:

Controller GISFileParser

fetch()

offset

GISRecord

RandomAccessFile GIS Record file

on disk

String

Identifying Classes

 Data Structures & Algorithms

14

CS@VT ©2000-2015 McQuain

Command

Example: Preliminary Overall Design

Here's a partial, preliminary design, based on the preceding discussions:

Controller
CommandParser

means

"knows about".

CommandProcessor GISRecordFileParser

GISRecord

RandomAccessFile

means

"has a".

String Long

Long

Command

RandomAccessFile

String

