CS3114 (Spring 2011)

PROGRAMMING ASSIGNMENT #2
Due Tuesday, March 15 @ 11:00 PM for 100 points
Early bonus date: Monday, March 14 @ 11:00 PM for a 10 point bonus
Initial Schedule due Thursday, February 24 @ 11:00 PM
Intermediate Schedule due Tuesday, March 8 @ 11:00 PM

[Updated 2/28,/2011]

Continuing the theme of bioinformatics applications, we turn to the problem of searching for
matching sequences in a sequence database. A key element in many bioinformatics problems is the
biological sequence. A biological sequence is just a list of characters chosen from some alphabet.
Two of the common biological sequences are DNA (composed of the four characters A, C, G, and
T) and RNA (composed of the four characters A, C, G, and U). In this project, you will be storing
and searching for DNA sequences, defined to be strings on the alphabet A, C, G, and T.

Given a sequence, simply searching a list of sequence strings for one that matches would take a
long time for a large collection of sequences. Instead, we will use a tree structure to store sequences
in a way that allows for efficient search. Not only can we determine whether a specified sequence
is in the database, but we can also find any sequence in the database that matches a search prefix.

DNA Trees:

We will define a new tree data structure to store DNA sequences, that we call a DNA tree. You
should read Section 13.3.2 in the textbook on PR quadtrees, since DNA trees are quite similar. DNA
trees store sequences in their leaf nodes. Internal nodes serve only as placeholders to help direct
search, they store no data. A leaf node is either empty, or stores a single sequence. Whenever you
attempt to insert a new sequence and the insert process reaches a leaf node containing a sequence,
that leaf node must split (just as in PR quadtree insertion). Whenever you remove a sequence from
a leaf node, if possible that node will merge with its siblings.

The DNA tree is a 5-way branching tree, with a branch for each possible letter. In addition
to the letters A, C, G, and T, we must augment the alphabet for DNA sequences to contain $ to
indicate the termination of a sequence. This permits us to store sequences that are prefixes of other
sequences already stored (without the $ symbol, a prefix would end up at an internal node of the
tree, which is forbidden). Thus, the five branches correspond to the five letters of the augmented
DNA alphabet: A, C, G, T, and $.

When traversing through the tree structure to perform an operation, the first branch from an
internal node corresponds to the letter A, the second branch to the letter C, and so on, with the
fifth branch corresponding to $. Thus, all sequences stored that begin with A will be in the first
subtree, all sequences stored that begin with C will be in the second subtree, and so on. If there
are no sequences stored in the tree, the tree consists of a single empty leaf node. If there is one
sequence stored in the tree, the tree consists of a single leaf node containing the sequence.

Input and Output:

The program will be invoked from the command-line as:

P2 <command-file>

The name of the program is P2. Parameter command-file is the name of the input file that
holds the commands to be processed by the program.



The input for this project will consist of a series of commands (some with associated parameters,
separated by spaces), one command for each line. A blank line may appear anywhere in the
command file, and any number of spaces may separate parameters. You need not worry about
checking for syntactic errors. That is, only the specified commands will appear in the file, and
the specified parameters will always appear. However, you must check for logical errors. The
commands will be read from the command file, and the output from processing the commands will
be written to standard output. The program should terminate after reading the EOF mark. The
commands are as follows:

insert sequence

Insert sequence into the DNA tree. Print a message indicating if the insertion was successful,
and if so, indicate the level of the leaf node inserted. It is an error to insert a duplicate sequence.
Such an error should be reported in the output, and no changes to the tree structure should take
place.

remove sequence
Remove sequence from the DNA tree if it exists. Print a suitable message if sequence is not in
the tree.

print

Print out the DNA tree, including both the node structure and the sequences it contains. You
should perform a preorder traversal of the tree, and print each node on a separate line in the order
that it is visited by the traversal. If the node is internal, just print the letter I. If the node is an
empty leaf node, just print the letter E. If the node contains a sequence, print the sequence. All
nodes should be printed so that the line is indented by 2 spaces for each level in the tree. That is,
the root node is printed with no indentation, immediate children of the root are indented 2 spaces,
grandchildren of the root are indented 4 spaces, and so on.

print lengths
Output is identical to that of the print command, except that the length of the sequence is
printed after the sequence for all sequences stored in the database.

print stats

Output is identical to that of the print command, except that the letter breakdown (by per-
centage) of the sequence is printed after the sequence for all sequences stored in the database. That
is, for each letter A, C, G, and T, the percentage of A’s in that sequence is printed, the percentage
of C’s, and so on. Percentages should be printed with two decimal places. For example, AAAAG
should show A’s as 80.00% and G’s as 20.00%.

search sequenceDescriptor

Find all sequences that match sequenceDescriptor.

The sequenceDescriptor can come in two forms. The first form is simply as a sequence contain-
ing letters from the alphabet A, C, G, and T. If this form is given, then print all sequences stored
in the tree for which sequenceDescriptor is a prefix (including exact matches). The second form
is a sequence from the letters A, C, G, and T, followed by a $ symbol. If this form is given, then
only an exact match of the sequence (without the $ symbol) is to be printed. Print the number of
nodes visited in the tree during the search.

Implementation:



You must use class inheritance to design your DNA Tree nodes. You must have a DNA Tree
node base class, with subclasses for the internal nodes and the leaf nodes.

Note that many leaf nodes of the DNA tree will contain no data. Storing many distinct “empty”
leaf nodes is quite wasteful. One design option is to store a NULL pointer to an empty leaf node
in its parent. However, this requires the parent node to understand this convention, and explicitly
check the value of its child pointers before proceeding, with special action taken if the pointer is
NULL. A better design is to use a “flyweight” object. A flyweight is a single empty leaf node that
is created one time at the beginning of the program, and pointed to whenever an empty child node
is needed. Your project should use a flyweight design to implement empty leaf nodes.

Internal nodes may not store data of any type (other than the pointers to children). No operation
should look at more nodes than necessary (especially the search operation).

All DNA tree operations must be implemented recursively.

The DNA sequences stored in the leaf nodes may be implemented using a linked list, or you
may store them in a character array of the appropriate size.

Programming Standards:
You must conform to good programming/documentation standards. Some specifics:

e You must include a header comment, preceding main(), specifying the compiler and operating
system used and the date completed.

e Your header comment must describe what your program does; don’t just plagiarize language
from this spec.

e You must include a comment explaining the purpose of every variable or named constant you
use in your program.

e You must use meaningful identifier names that suggest the meaning or purpose of the constant,
variable, function, etc.

e Always use named constants or enumerated types instead of literal constants in the code.

e Precede every major block of your code with a comment explaining its purpose. You don’t
have to describe how it works unless you do something so sneaky it deserves special recogni-
tion.

e You must use indentation and blank lines to make control structures more readable.

e Precede each function and/or class method with a header comment describing what the
function does, the logical significance of each parameter (if any), and pre- and post-conditions.

e Decompose your design logically, identifying which components should be objects and what
operations should be encapsulated for each.

Neither the GTAs nor the instructors will help any student debug an implementation unless
it is properly documented and exhibits good programming style. Be sure to begin your internal
documentation right from the start.

You may only use code you have written, either specifically for this project or for earlier pro-
grams, or code taken from the textbook. Note that the textbook code is not designed for the



specific purpose of this assignment, and is therefore likely to require modification. It may, however,
provide a useful starting point.

Testing:

A sample data file will be posted to the website to help you test your program. This is not the
data file that will be used in grading your program. The test data provided to you will attempt
to exercise the various syntactic elements of the command specifications. It makes no effort to be
comprehensive in terms of testing the data structures required by the program. Thus, while the
test data provided should be useful, you should also do testing on your own test data to ensure
that your program works correctly.

Deliverables:

When structuring the source files of your project (be it in Eclipse as a “Managed Java Project,”
or in another environment), use a flat directory structure; that is, your source files will all be
contained in the project root. Any subdirectories in the project will be ignored. If you used a
makefile to compile your code, or otherwise did something that won’t automatically compile in
Eclipse, be sure to include any necessary files or instructions so that the TAs can compile it.

If submitting through Eclipse, the format of the submitted archive will be managed for you. If
you choose not to develop in Eclipse, you will submit either a ZIP-compressed archive (compatible
with Windows ZIP tools or the Unix zip command) or else a tar’ed and gzip’ed archive. Either
way, your archive should contain all of the source code for the project, along with any files or
instructions necessary to compile the code. If you need to explain any pertinent information to aid
the TA in the grading of your project, you may include an optional “readme” file in your submitted
archive.

You will submit your project through the automated Web-CAT server. Links to the Web-CAT
client and instructions for those students who are not developing in Eclipse are posted at the class
website. If you make multiple submissions, only your last submission will be evaluated.

You are permitted (and ecouraged) to work with a partner on this project. When you work with
a partner, then only one member of the pair will make a submission. Be sure both names are
included in the documentation. Whatever is the final submission from either of the pair members
is what we will grade unless you arrange otherwise with the GTA.

Scheduling:

In addition to the project submission, you are also required to submit an initial project schedule,
an intermediate schedule, and a final schedule with your project submission. The schedule sheet
template for this project is posted at the course website. You won’t receive direct credit for
submitting the schedule as required, but each instance of failing to submit scheduling information
as required will lose 10 points from the project grade.

Pledge:

Your project submission must include a statement, pledging your conformance to the Honor
Code requirements for this course. Specifically, you must include the following pledge statement
near the beginning of the file containing the function main() in your program. The text of the
pledge will also be posted online.

// On my honor:



//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

- I have not used source code obtained from another student,
or any other unauthorized source, either modified or
unmodified.

- All source code and documentation used in my program is

either
source

- I have
anyone

my original work, or was derived by me from the
code published in the textbook for this course.

not discussed coding details about this project with
other than my partner (in the case of a joint

submission), instructor, ACM/UPE tutors or the TAs assigned

to this course. I understand that I may discuss the concepts
of this program with other students, and that another student
may help me debug my program so long as neither of us writes
anything during the discussion or modifies any computer file

during
letter

the discussion. I have violated neither the spirit nor
of this restriction.

Programs that do not contain this pledge will not be graded.



