
Binary Search Trees

Data Structures & File Management

Iterating over a Tree Structure

 Iterating over linear structures (lists, vectors) is simple – just start from one

end and stop at the other

 How should we implement an iterator over a non-linear structure such as a

tree?

 We have already discussed various tree traversals: pre-order, in-order, post-

order.

 So, it is logical to implement iterators that move over the elements in the tree

in these same orders.

 Warning: in providing an iterator to client code the BST may not always

maintain the BST ordering property if the client uses the reference to mutate

the key/primary ordering field.

Computer Science Dept. Va Tech © T. Allowatt, D. Barnette

1

Binary Search Trees

Data Structures & File Management

Iterator Dilemma

 Tree traversals were implemented recursively

– When a traversal method is called by client code, it doesn’t return until every

node in the tree has been processed (likely with operations carried out on each

element; for instance, visitors).

 On the other hand, iterators are non-recursive

– The client code calls a function to advance the iterator by one element, and then it

returns immediately.

 These paradigms are vastly different – thus, implementing an iterator is much

more involved than just making a simple modification to the recursive

traversal code, because we cannot “pause and resume” the recursion.

Computer Science Dept. Va Tech © T. Allowatt, D. Barnette

2

Binary Search Trees

Data Structures & File Management

Recursion: inner functionality

 Consider how recursion is implemented in Java (and most other runtime

environments)

 Function calls push a return address, parameter values, and space for local

variables onto the runtime stack.

 In a BST traversal a reference to the current node is passed as an argument to

the recursive function and these build up on the stack as the calls go deeper

down the tree.

 So, the top of the runtime stack contains a reference to the current node,

and the elements under it are the history required to backtrack up the tree to

find the next node in a particular ordering.

Computer Science Dept. Va Tech © T. Allowatt, D. Barnette

3

Binary Search Trees

Data Structures & File Management

Mimicking Recursion

 What if we keep track of the node stack ourselves?

– Add a Stack object as a field member of the iterator class.

 By severing the node history from the call stack, we are no longer “trapped”

inside a sequence of recursive calls, so we can pause the traversal at will.

 For a basic forward iterator, we must consider three cases:

– What should be the state of the iterator initially?

– What should be the state of the iterator after all nodes have been visited?

– How does next() method modify the iterator object state to advance to the next

element in the traversal order?

 These notes will not discuss how to implement reverse tree iterators.

Computer Science Dept. Va Tech © T. Allowatt, D. Barnette

4

https://docs.oracle.com/javase/7/docs/api/java/util/Stack.html

Binary Search Trees

Data Structures & File ManagementComputer Science Dept. Va Tech © T. Allowatt, D. Barnette

5Adding an Iterator

A BST iterator can be added in a very similar way as an iterator for a linked list.

To implement:

 Declare that your BST class implements the Iterable interface.

 add an inner class declaration for the iterator within the BST declaration.

 an iterator will store a pointer to a tree node; the next()method dereferences it to

return the data element within that node.

 implement the hasNext() and next() methods of the inner iterator class.

 add the iterator-supplying method to the BST class: iterator()

 One for each type of traversal.

 there's no case for an iterator-based insertion function in a BST, but there may be a

case for an iterator-based deletion function

Consider adding a search function that returns an iterator:

 what traversal pattern should the iterator provide?

 is it necessary to modify the BST implementation aside from adding support

functions?

Binary Search Trees

Data Structures & File ManagementComputer Science Dept. Va Tech © T. Allowatt, D. Barnette

6Iterator Increment Logic

The only issue that is handled differently from the the linked list iterator is the pattern by

which an iterator steps forward or backwards within the BST.

Consider stepping forward as in an inorder traversal:

The pattern is reasonably straightforward, but how can we move up from a node to its

parent within the BST?

C

A I

E J

D G

B

F H

start

end

Binary Search Trees

Data Structures & File Management

Pre-Order Iteration

 We will consider the pre-order traversal, because it is the simplest to
implement in a non-recursive iterator

– This is due to the fact that the operation on the element comes before either of the
recursive calls

 Consider code for a pre-order traversal:

Computer Science Dept. Va Tech © T. Allowatt, D. Barnette

7

public void preOrder () {

preOrderHelper(root);

}

private void preOrderHelper(BinaryNode<T> t) {

if (current == null) return;

System.out.println(t.element);

preOrderHelper(t.left);

preOrderHelper(t.right);

}

Binary Search Trees

Data Structures & File Management

Implementing Pre-Order: initial state

 What operations occur in the recursive pre-order traversal before the

System.out.println(t.element);

line is reached?

 In this case, nothing – we call the traversal function for the root node, and the
System.out.println(t.element); immediately executes.

 So, we can mimic this by implementing the iterator constructor to push the

root node onto the iterator’s stack to start the traversal.

Computer Science Dept. Va Tech © T. Allowatt, D. Barnette

8

Binary Search Trees

Data Structures & File Management

Implementing Pre-Order: end state

 What happens when the traversal is complete?

– The initial recursive call returns to the client code, so the runtime stack is returned

to the same state it was in prior to the traversal.

 So, we can represent the end of the iteration by an empty node stack.

 In fact, this is exactly the case for all of the standard tree traversals – pre-

order, in-order, and post-order.

Computer Science Dept. Va Tech © T. Allowatt, D. Barnette

9

Binary Search Trees

Data Structures & File Management

Implementing Pre-Order: next()

 If we are sitting at a particular node in the tree, what is the next node in a pre-

order traversal?

– If the previous node was the parent, then the next node is the immediate left child

– If we have already visited the left child, then the next node is the immediate right

child

– This assumes, of course, that those children exist – if not, we have to backtrack up

the tree

 So, we pop the current node from the stack, then push its right and left

children, if they exist.

– Note that we must push right first, then left, so that the left child is the first to be

popped back off later.

Computer Science Dept. Va Tech © T. Allowatt, D. Barnette

10

Binary Search Trees

Data Structures & File Management

Pre-Order: next()

 Non-Tested Code

Computer Science Dept. Va Tech © T. Allowatt, D. Barnette

11

public T next() {

if (!nodeStack.empty()) {

BinaryNode<T> current = nodeStack.peek();

nodeStack.pop();

if (current.right != null) {

nodeStack.push(current.right);

}

if (current.left != null) {

nodeStack.push(current.left);

}

}

return (current.element);

}

“Beware of bugs in the above code; I have only proved it correct, not tried it.”

– D.E. Knuth

(It’s worse than that, the code above hasn’t even been proved correct.)

Binary Search Trees

Data Structures & File Management

Pre-Order Iterator Example

 This example traces the contents of the node stack over a pre-order traversal

using the iterator. On each call to next(), the top element is popped off and its

right and left children, if any, are pushed onto the stack, in that order. (The

top of the stack is the leftmost element in the diagrams below.)

 construction: <5>

 next(): <3, 10>

 next(): <1, 10>

 next(): <10>

 next(): <8, 15>

 next(): <9, 15>

 next(): <15>

 next(): <> (end)

Computer Science Dept. Va Tech © T. Allowatt, D. Barnette

12

5

3 10

158

9

1

Binary Search Trees

Data Structures & File Management

In-Order Iteration

 Consider code for an in-order traversal:

 Logically, what does this traversal look like?

– First, we go as far left as possible from the root, keeping track of the
nodes we pass

– At a leaf, we process the node, return to its parent, process it, and then
move to the right child

– But before processing the right child, we have to again go all the way
left, and repeat

Computer Science Dept. Va Tech © T. Allowatt, D. Barnette

13

public void inOrder () {

inOrderHelper(root);

}

private void inOrderHelper(BinaryNode<T> t) {

if (current == null) return;

inOrderHelper(t.left);

System.out.println(t.element);

inOrderHelper(t.right);

}

Binary Search Trees

Data Structures & File Management

Implementing In-Order: initial state

 For the in-order traversal iterator to be properly positioned at the first node in

the traversal, it is not enough to just push the root.

 The in-order constructor has to push all the nodes along the leftmost branch,

starting from the root until we reach a node with no left child.

Computer Science Dept. Va Tech © T. Allowatt, D. Barnette

14

public inorder_iterator() {

if (root != null){

nodeStack = new Stack<BinaryNode<T>>();

goLeftFrom(root);

}

}

private void goLeftFrom(BinaryNode<T> t)

{

while (t != null) {

nodeStack.push(t);

t = t.left;

}

}

Binary Search Trees

Data Structures & File Management

Implementing In-Order: next()

 If we are sitting at a particular node in the tree, what is the next node in a in-

order traversal?

– It will never be the left child – we have already visited those

– If the node has a right child, then the next node is somewhere in the right subtree

– More specifically, it is the leftmost node in the right subtree

 So, we pop the current node from the stack, then if it has a right child, we

push it and all of the nodes down its leftmost branch.

Computer Science Dept. Va Tech © T. Allowatt, D. Barnette

15

Binary Search Trees

Data Structures & File Management

In-Order: next()

 Pseudo-Code

Computer Science Dept. Va Tech © T. Allowatt, D. Barnette

16

public T next(){

if (!nodeStack.empty()) {

BinaryNode<T> current = nodeStack.peek();

nodeStack.pop();

if (current.right != null) {

goLeftFrom(current.right);

}

}

return (current.element);

}

“Beware of bugs in the above code; I have only proved it correct, not tried it.”

– D.E. Knuth

(It’s worse than that, the code above hasn’t even been proved correct.)

Binary Search Trees

Data Structures & File Management

In-Order Iterator Example

 This example traces the contents of the node stack over an in-order traversal

using the iterator. Since multiple elements may be pushed at once, these are

highlighted in red.

 construction : <1, 3, 5>

 next(): <3, 5>

 next(): <5>

 next():= <8, 10>

 next(): <9, 10>

 next(): <10>

 next(): <15>

 next(): <> (end)

Computer Science Dept. Va Tech © T. Allowatt, D. Barnette

17

5

3 10

158

9

1

Binary Search Trees

Data Structures & File Management

Post-Order Iteration

 Consider code for a post-order traversal:

 Logically, what does this traversal look like?

– First, we go as far left as possible from the root, until we reach a node with
no left child.

– If the node we stop at has a right child, we move to it, then again descend
to the left as far as possible, and repeat.

Computer Science Dept. Va Tech © T. Allowatt, D. Barnette

18

public void postOrder () {

postOrderHelper(root);

}

private void postOrderHelper(BinaryNode<T> t) {

if (current == null) return;

inOrderHelper(t.left);

inOrderHelper(t.right);

System.out.println(t.element);

}

Binary Search Trees

Data Structures & File Management

Post-Order Complications

 In the pre-order and in-order traversals, once we passed a node, we pushed it
on the stack so we could process it on the way back up.

 After we processed that node on the way back up, we could pop it off and
forget about it, because we never needed to consider it again later.

 In a post-order traversal, however, we pass over a node twice before we are
ready to process it – first, to traverse its left children, then to traverse its right
children.

Computer Science Dept. Va Tech © T. Allowatt, D. Barnette

19

Binary Search Trees

Data Structures & File Management

Post-Order Complications

Consider this example:

 Starting from the root (a), we
move left to its child (b)

 At this point, we have pushed (a)
and (b) onto the stack, and
continue to (b)’s left children, if any

 Once we have processed the left
subtree under (b), we return to a
point where (b) is the top of the
stack

 But, we can’t pop (b) off yet – we have
to process its right subtree and keep (b) on the stack so that we know to stop
there later

Computer Science Dept. Va Tech © T. Allowatt , D. Barnette

20

a

b

c

…

…

… …

Binary Search Trees

Data Structures & File Management

Post-Order Complications

 So, the stack in a post-order traversal does not only need to contain nodes, but
also for each node a Boolean flag that indicates whether we have visited its
right child or not.

– When we reach a node during the backtracking process, we pop it off as usual

– If we haven’t visited its right child, then we set this flag, push the node back
onto the stack, and then walk down the right subtree

– If we already have visited its right child, then we stop here so that the client code
can process the element

Computer Science Dept. Va Tech © T. Allowatt , D. Barnette

21

Binary Search Trees

Data Structures & File Management

Post-Order Descending Logic

 We write a helper function to descend down the tree as described previously

 We keep (node, wentRight) pairs on the stack; wentRight is a Boolean flag
that indicates if we have visited the node’s right subtree

 We also keep track of the next node to visit

 Consider an arbitrary (node, wentRight) pair

– If node has a left child, then push (node, false) onto the stack; the next node to
visit is the left child

– If node does not have a left child, then push (node, true) onto the stack; the next
node to visit is the right child

 We stop when the next node becomes null

Computer Science Dept. Va Tech © T. Allowatt , D. Barnette

22

Binary Search Trees

Data Structures & File Management

Post-Order Helper Function

 Pseudo-Code

Computer Science Dept. Va Tech © T. Allowatt , D. Barnette

23

private void visitSubtree(BinaryNode<T> t) {

while (t != null) {

BinaryNode<T> next;

boolean wentRight;

if (t.left == null) {

next = t.right;

wentRight = true;

}

else

{

next = t.left;

wentRight = false;

}

nodeStack.push(new NodeInfo(t, wentRight));

t = next;

}

}

“Beware of bugs in the above code; I have only proved it correct, not tried it.”

– D.E. Knuth

(It’s worse than that, the code above hasn’t even been proved correct.)

Binary Search Trees

Data Structures & File Management

Implementing Post-Order: initial state

 The action taken by the post-order constructor is simply to use the traversal

defined by the helper function above, starting from the root

Computer Science Dept. Va Tech © T. Allowatt, , D. Barnette

24

public postorder_iterator() {

if (root != null) {

nodeStack = new Stack<NodeInfo>();

visitSubTree(root);

}

}

Binary Search Trees

Data Structures & File Management

Implementing Post-Order: next()

 To advance the iterator to the next node, we follow the logic described above

– Descend as far as possible until we hit a leaf

– Process the leaf

– Backtrack up the tree

– If we hit a node during backtracking whose right subtree hasn’t yet been visited,

descend into it

– Once the right subtree has been completely processed, only then do we process

the internal node, and then backtrack again

Computer Science Dept. Va Tech © T. Allowatt , D. Barnette

25

Binary Search Trees

Data Structures & File Management

In-Order: next()

 Pseudo-Code

Computer Science Dept. Va Tech © T. Allowatt , D. Barnette

26

public T next() {

if (!nodeStack.empty()) {

NodeInfo current = nodeStack.peek();

BinaryNode<T> next = current.getNode();

nodeStack.pop();

if (!nodeStack.empty()) {

current = nodeStack.peek();

if(!current.getWentRight()) {

nodeStack.pop();

current.setWentRight(true);

nodeStack.push(current);

visitSubtree(current.getNode().right);

}

}

}

return (next.element);

}

“Beware of bugs in the above code; I have only proved it correct, not tried it.”

– D.E. Knuth

(It’s worse than that, the code above hasn’t even been proved correct.)

Binary Search Trees

Data Structures & File Management

Post-Order Iterator Example

 This example traces the contents of the node stack over a post-order traversal

using the iterator. Since multiple elements may be pushed at once, these are

highlighted in red. (Superscript T/F indicate whether wentRight is true or

false, respectively.)

 constructor: <1T, 3F, 5F>

 next(): <3T, 5F>

 next(): <9T, 8T, 10F, 5T>

 next(): <8T, 10F, 5T>

 next(): <15T, 10T, 5T>

 next(): <10T, 5T>

 next(): <5T>

 next(): <> (end)

Computer Science Dept. Va Tech © T. Allowatt , D. Barnette

27

5

3 10

158

9

1

Binary Search Trees

Data Structures & File Management

Post-Order Iterator - alternative

 When the node at the top of the Stack is removed the new top node is always

the parent of the removed node, (except for the root).

 Use this fact to eliminate the wentRight flag.

 When incrementing, pop the top node & access the new top node.

 Compare the popped node to determine if it is the left or right child of the top

node.

 If it is the left child then use visitSubtree to push the post-order right sub-tree

node.

 If it is the right child, do nothing

Computer Science Dept. Va Tech © T. Allowatt, , D. Barnette

28

Binary Search Trees

Data Structures & File Management

When Are Two Iterators Equal?

 First, we need to decide whether iterators of different traversal types can be
compared

 This begs the question: Is the iterator merely a position in the tree, or does it
represent an entire traversal whose state changes as we move through the
elements?

– If we choose position, we should be able to compare different kinds of iterators
(e.g., pre-order and in-order) to see if they point to the same node

– If we choose traversal, this should not be allowed

 Allowing iterators of different types to be compared can raise implementation
issues, because we must be able to compare all possible pairs of types of
iterators

– In this case, perhaps move some of the comparison logic into a common base
class?

Computer Science Dept. Va Tech © T. Allowatt , D. Barnette

29

Binary Search Trees

Data Structures & File Management

Implementing equals

 Since the top of the stack represents the current node in the traversal, it is

sufficient to compare this element regardless of the rest of the stack contents

Computer Science Dept. Va Tech © T. Allowatt , D. Barnette

30

public boolean equals(Object other) {//pre-order iterator

if (other == null) return false;

if (!this.getClass().equals(other.getClass()))

return false;

preorder_iterator rhs = (preorder_iterator) other;

if (nodeStack.isEmpty() && rhs.nodeStack.isEmpty())

return true;

else if (nodeStack.isEmpty() != rhs.nodeStack.isEmpty())

return false;

else //identity reference comparison

return (nodeStack.peek() == rhs.nodeStack.peek());

}

“Beware of bugs in the above code; I have only proved it correct, not tried it.”

– D.E. Knuth

(It’s worse than that, the code above hasn’t even been proved correct.)

Binary Search Trees

Data Structures & File Management

Can’t We Simplify All of This?

 The complexity of these iteration algorithms provides one argument for using

parent pointers in a tree implementation.

 For the iterations described above, we can uniquely determine the next node

based on only two properties: the node we are currently at, and the node from

which we just came.

 With parent pointers, we can easily backtrack up the tree as needed, instead of

requiring a stack to keep track of the history.

Computer Science Dept. Va Tech © T. Allowatt , D. Barnette

31

