
BSTs

 Data Structures & Algorithms

1

CS@VT ©2000 -2015 WD McQuain

Binary Trees

A binary tree is either empty, or it consists of a node called the root together with two

binary trees called the left subtree and the right subtree of the root, which are disjoint

from each other and from the root.

For example:

Jargon: root node

internal node

leaf node

edge

level: 0

 1

 2

BSTs

 Data Structures & Algorithms

2

CS@VT ©2000 -2015 WD McQuain

Binary Tree Node Relationships

A binary tree node may have 0, 1 or 2 child nodes.

A path is a sequence of adjacent (via the edges) nodes in the tree.

A subtree of a binary tree is either empty, or consists of a node in that tree and all of its

descendent nodes.

child nodes of a

a

b g

d e

f h

parent node

of b and g

subtree rooted at g

a descendant of

a and g

BSTs

 Data Structures & Algorithms

3

CS@VT ©2000 -2015 WD McQuain

Quick Application: Expression Trees

A binary tree may be used to represent an algebraic expression:

*

x –

+ 5

x y

 5)(yxx

If we visit the nodes of the binary tree in

the correct order, we will construct the

algebraic expression:

Each subtree represents a part of the entire

expression…

BSTs

 Data Structures & Algorithms

4

CS@VT ©2000 -2015 WD McQuain

Traversals

A traversal is an algorithm for visiting some or all of the nodes of a binary tree in some

defined order.

A traversal that visits every node in a binary tree is called an enumeration.

a

b g

d e

f h

preorder: visit the node, then the

left subtree, then the

right subtree

postorder: visit the left subtree, then

the right subtree, and

then the node

inorder: visit the left subtree, then

the node, then the right

subtree

a b g d f h e

b f h d e g a

b a f d h g e

BSTs

 Data Structures & Algorithms

5

CS@VT ©2000 -2015 WD McQuain

Postorder Traversal Details

Consider the postorder traversal from a recursive perspective:

a

b g

d e

f h

postorder: postorder visit the left subtree,

 postorder visit the right subtree,

 then visit the node (no recursion)

If we start at the root:

POV sub(b) | POV sub(g) | visit a

visit b POV sub(d) | POV sub(e) | visit g

visit f | visit h | visit d visit e

BSTs

 Data Structures & Algorithms

6

CS@VT ©2000 -2015 WD McQuain

Binary Search Trees

A binary search tree or BST is a binary tree that is either empty or in which the data

element of each node has a key, and:

The general binary tree shown in the previous chapter is not terribly useful in practice.

The chief use of binary trees is for providing rapid access to data (indexing, if you will)

and the general binary tree does not have good performance.

Suppose that we wish to store data elements that contain a number of fields, and that

one of those fields is distinguished as the key upon which searches will be performed.

1. All keys in the left subtree (if there is one) are less than the key in

the root node.

2. All keys in the right subtree (if there is one) are greater than (or

equal to)* the key in the root node.

3. The left and right subtrees of the root are binary search trees.

* In many uses, duplicate values are not allowed.

BSTs

 Data Structures & Algorithms

7

CS@VT ©2000 -2015 WD McQuain

BST Insertion

Here, the key values are characters (and only key values are shown).

Inserting the following key values in the given order yields the given BST:

50 75 80 60 30 55 70 40 50

30 75

60 80

55 70

40

What is the resulting tree if the (same) key values are inserted in the order:

30 40 50 55 60 70 75 80

In a BST, insertion is always

at the leaf level. Traverse

the BST, comparing the new

value to existing ones, until

you find the right spot, then

add a new leaf node holding

that value.

BSTs

 Data Structures & Algorithms

8

CS@VT ©2000 -2015 WD McQuain

Searching in a BST

D

B G

E H A C

Because of the key ordering imposed by a BST, searching resembles the binary search

algorithm on a sorted array, which is O(log N) for an array of N elements.

A BST offers the advantage of purely dynamic storage, no wasted array cells and no

shifting of the array tail on insertion and deletion.

Trace searching for the key value E.

BSTs

 Data Structures & Algorithms

9

CS@VT ©2000 -2015 WD McQuain

50

30 75

60 80

55 70

40

BST Deletion

Deletion is perhaps the most complex operation on a BST, because the algorithm must

result in a BST. The question is: what value should replace the one deleted? As with

the general tree, we have cases:

 - Removing a leaf node is trivial, just set the relevant child pointer in the parent

node to NULL.

 - Removing an internal node which has only one subtree is also trivial, just set

the relevant child pointer in the parent node to target the root of the subtree.

NULL

BSTs

 Data Structures & Algorithms

10

CS@VT ©2000 -2015 WD McQuain

BST Deletion

 - Removing an internal node which has two subtrees is more complex…

Simply removing the node would

disconnect the tree. But what value

should replace the one in the

targeted node?

To preserve the BST property, we

must take the smallest value from

the right subtree, which would be

the closest succcessor of the value

being deleted

OR

the largest value from the left

subtree, which would be the closest

predecessor of the value being

deleted

Fortunately, these extreme values are easy to find…

50

30 75

60 80

55 70

40

BSTs

 Data Structures & Algorithms

11

CS@VT ©2000 -2015 WD McQuain

BST Deletion

So, we first find the left-most node

of the right subtree, and then swap

data values between it and the

targeted node.

Note that at this point we don’t

necessarily have a BST.

Now we must delete the copied

value from the right subtree.

That looks straightforward here since the node in question is a leaf. However…

 - the node will NOT be a leaf in all cases

 - the occurrence of duplicate values is a complicating factor

 - so we might want to have a DeleteRightMinimum() function to clean up at

this point

55

30 75

60 80

55 70

40

BSTs

 Data Structures & Algorithms

12

CS@VT ©2000 -2015 WD McQuain

BST Deletion

Suppose we want to delete the

value 55 from the BST:

After replacing 55 with 60, we must

delete

Also, consider deleting the value 75. In this case, the right subtree is just a leaf node,

whose parent is the node originally targeted for deletion.

Moral: be careful to consider ALL cases when designing.

55

30 75

60 80

70

40

BSTs

 Data Structures & Algorithms

13

CS@VT ©2000 -2015 WD McQuain

Balance in a BST

D

B F

E G A C

However, a BST with N nodes does not always provide O(log N) search times.

A well-balanced BST. This will have

log(N) search times in the worst case.

A poorly-balanced BST. This will

not have log(N) search times in the

worst, or even the average, case. A B C D E F G

What if we inserted the

values in the order:

G

D

F

C

B

E

A

BSTs

 Data Structures & Algorithms

14

CS@VT ©2000 -2015 WD McQuain

Search Cost in a BST

From an earlier theorem on binary trees, we know that a binary tree that contains L nodes

must contain at least 1 + log L levels.

If the tree is full, we can improve the result to imply that a full binary tree that contains N

nodes must contain at least log N levels.

So, for any BST, the there is always an element whose search cost is at least log N.

Unfortunately, it can be much worse. If the BST is a "stalk" then the search cost for the

last element would be N.

It all comes down to one simple issue: how close is the tree to having minimum height?

Unfortunately, if we perform lots of random insertions and deletions in a BST, there is no

reason to expect that the result will have nearly-minimum height.

BSTs

 Data Structures & Algorithms

15

CS@VT ©2000 -2015 WD McQuain

Cost of Insertion/Deletion in a BST

Clearly, once the parent is found, the remaining cost of inserting a new node in a BST is

constant, simply allocating a new node object and setting a pointer in the parent node.

So, insertion cost is essentially the same as search cost.

For deletion, the argument is slightly more complex. Suppose the parent of the targeted

node has been found.

If the parent has only one subtree, then the remaining cost is resetting a pointer in the

parent and deallocating the node; that's constant.

But, if the parent has two subtrees, then an additional search must be carried out to find

the minimum value in the right subtree, and then an element copy must be performed, and

then that node must be removed from the right subtree (which is again a constant cost).

In either case, we have no more than the cost of a worst-case search to the leaf level, plus

some constant manipulations.

So, deletion cost is also essentially the same as search cost.

