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Binary Trees 

A binary tree is either empty, or it consists of a node called the root together with two 

binary trees called the left subtree and the right subtree of the root, which are disjoint 

from each other and from the root. 

For example:  

Jargon: root node 

internal node 

leaf node 

edge 

level: 0 

 1 

 2 



BSTs 

 Data Structures & Algorithms 

2 

CS@VT ©2000 -2015 WD McQuain 

Binary Tree Node Relationships   

A binary tree node may have 0, 1 or 2 child nodes. 

A path is a sequence of adjacent (via the edges) nodes in the tree. 

A subtree of a binary tree is either empty, or consists of a node in that tree and all of its 

descendent nodes. 

child nodes of a 

a 

b g 

d e 

f h 

parent node 

of b and g 

subtree rooted at g 

a descendant of 

a and g 
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Quick Application: Expression Trees 

A binary tree may be used to represent an algebraic expression: 

* 

x – 

+ 5 

x y 

 5)(  yxx

If we visit the nodes of the binary tree in 

the correct order, we will construct the 

algebraic expression: 

Each subtree represents a part of the entire 

expression… 
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Traversals   

A traversal is an algorithm for visiting some or all of the nodes of a binary tree in some 

defined order. 

A traversal that visits every node in a binary tree is called an enumeration. 

a 

b g 

d e 

f h 

preorder: visit the node, then the 

left subtree, then the 

right subtree 

postorder: visit the left subtree, then 

the right subtree, and 

then the node 

inorder: visit the left subtree, then 

the node, then the right 

subtree 

a  b  g  d  f  h  e 

b  f  h  d  e  g  a 

b  a  f  d  h  g  e 
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Postorder Traversal Details 

Consider the postorder traversal from a recursive perspective: 

a 

b g 

d e 

f h 

postorder: postorder visit the left subtree,  

 postorder visit the right subtree,  

 then visit the node (no recursion) 

If we start at the root: 

POV sub(b)    |    POV sub(g)   |   visit a 

visit b POV sub(d)  |  POV sub(e)  |  visit g 

visit f  |  visit h  |  visit d visit e 
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Binary Search Trees 

A binary search tree or BST is a binary tree that is either empty or in which the data 

element of each node has a key, and: 

The general binary tree shown in the previous chapter is not terribly useful in practice.  

The chief use of binary trees is for providing rapid access to data (indexing, if you will) 

and the general binary tree does not have good performance. 

Suppose that we wish to store data elements that contain a number of fields, and that 

one of those fields is distinguished as the key upon which searches will be performed. 

1. All keys in the left subtree (if there is one) are less than the key in 

the root node. 

2. All keys in the right subtree (if there is one) are greater than (or 

equal to)* the key in the root node. 

3. The left and right subtrees of the root are binary search trees. 

* In many uses, duplicate values are not allowed. 
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BST Insertion   

Here, the key values are characters (and only key values are shown). 

Inserting the following key values in the given order yields the given BST: 

50 75 80 60 30 55 70 40 50 

30 75 

60 80 

55 70 

40 

What is the resulting tree if the (same) key values are inserted in the order: 

30 40 50 55 60 70 75 80 

In a BST, insertion is always 

at the leaf level.  Traverse 

the BST, comparing the new 

value to existing ones, until 

you find the right spot, then 

add a new leaf node holding 

that value. 
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Searching in a BST 

D 

B G 

E H A C 

Because of the key ordering imposed by a BST, searching resembles the binary search 

algorithm on a sorted array, which is O(log N) for an array of N elements. 

A BST offers the advantage of purely dynamic storage, no wasted array cells and no 

shifting of the array tail on insertion and deletion. 

Trace searching for the key value E. 
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50 

30 75 

60 80 

55 70 

40 

BST Deletion 

Deletion is perhaps the most complex operation on a BST, because the algorithm must 

result in a BST.  The question is:  what value should replace the one deleted?  As with 

the general tree, we have cases: 

 - Removing a leaf node is trivial, just set the relevant child pointer in the parent 

node to NULL.   

 - Removing an internal node which has only one subtree is also trivial, just set 

the relevant child pointer in the parent node to target the root of the subtree. 

NULL 
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BST Deletion 

 - Removing an internal node which has two subtrees is more complex… 

Simply removing the node would 

disconnect the tree.  But what value 

should replace the one in the 

targeted node? 

To preserve the BST property, we 

must take the smallest value from 

the right subtree, which would be 

the closest succcessor of the value 

being deleted 

OR 

the largest value from the left 

subtree, which would be the closest 

predecessor of the value being 

deleted 

Fortunately, these extreme values are easy to find… 

50 

30 75 

60 80 

55 70 

40 
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BST Deletion 

So, we first find the left-most node 

of the right subtree, and then swap 

data values between it and the 

targeted node. 

Note that at this point we don’t 

necessarily have a BST. 

 

Now we must delete the copied 

value from the right subtree. 

That looks straightforward here since the node in question is a leaf.  However… 

 - the node will NOT be a leaf in all cases 

 - the occurrence of duplicate values is a complicating factor 

 - so we might want to have a DeleteRightMinimum() function to clean up at 

this point 

55 

30 75 

60 80 

55 70 

40 
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BST Deletion 

Suppose we want to delete the 

value 55 from the BST: 

After replacing 55 with 60, we must 

delete 

Also, consider deleting the value 75.  In this case, the right subtree is just a leaf node, 

whose parent is the node originally targeted for deletion.   

 

Moral:  be careful to consider ALL cases when designing. 

55 

30 75 

60 80 

70 

40 
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Balance in a BST 

D 

B F 

E G A C 

However, a BST with N nodes does not always provide O(log N) search times. 

A well-balanced BST.  This will have 

log(N) search times in the worst case. 

A poorly-balanced BST.  This will 

not have log(N) search times in the 

worst, or even the average, case. A  B  C  D  E  F  G 

What if we inserted the 

values in the order: 

G 

D 

F 

C 

B 

E 

A 
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Search Cost in a BST 

From an earlier theorem on binary trees, we know that a binary tree that contains L nodes 

must contain at least 1 + log L levels.   

If the tree is full, we can improve the result to imply that a full binary tree that contains N 

nodes must contain at least log N levels. 

So, for any BST, the there is always an element whose search cost is at least log N. 

 

Unfortunately, it can be much worse.  If the BST is a "stalk" then the search cost for the 

last element would be N. 

 

It all comes down to one simple issue:  how close is the tree to having minimum height? 

 

Unfortunately, if we perform lots of random insertions and deletions in a BST, there is no 

reason to expect that the result will have nearly-minimum height. 
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Cost of Insertion/Deletion in a BST 

Clearly, once the parent is found, the remaining cost of inserting a new node in a BST is 

constant, simply allocating a new node object and setting a pointer in the parent node. 

So, insertion cost is essentially the same as search cost. 

 

For deletion, the argument is slightly more complex.  Suppose the parent of the targeted 

node has been found.   

If the parent has only one subtree, then the remaining cost is resetting a pointer in the 

parent and deallocating the node; that's constant. 

But, if the parent has two subtrees, then an additional search must be carried out to find 

the minimum value in the right subtree, and then an element copy must be performed, and 

then that node must be removed from the right subtree (which is again a constant cost). 

In either case, we have no more than the cost of a worst-case search to the leaf level, plus 

some constant manipulations. 

So, deletion cost is also essentially the same as search cost. 


