CS3114 (Fall 2014)

PROGRAMMING ASSIGNMENT #1
Due Wednesday, September 17 @ 11:00 PM for 100 points
Due Tuesday, September 16 @ 11:00 PM for 10 point bonus

Updated: Tuesday 9/02

Assignment:

You will write a memory management package for storing variable-length records in a large
memory space. For background on this project, view the modules on sequential fit memory man-
agers in the OpenDSA class textbook.

The records that you will store for this project are artist names and track names from a subset of
the Million Song database. This project will be the first in a series over the course of the semestter
that will gradually build up the necessary data structures for doing search and analysis on a large
song database.

Your memory pool will consist of a large array of bytes. You will use a doubly linked list to
keep track of the free blocks in the memory pool. This list will be referred to as the freeblock list.
You will use the best fit rule for selecting which free block to use for a memory request. That is,
the smallest free block in the linked list that is large enough to store the requested space will be
used to service the request (if any such block exists). If not all space of this block is needed, then
the remaining space will make up a new free block and be returned to the free list. If there is no
free block large enough to service the request, then you will grow the memory pool, as explained
below.

Be sure to merge adjacent free blocks whenever a block is released. To do the merge, whenever
a block is released it will be necessary to search through the freeblock list, looking for blocks that
are adjacent to either the beginning or the end of the block being released. Do not consider the
first and last memory positions of the memory pool to be adjacent. That is, the memory pool itself
is not considered to be circular.

Aside from the memory manager’s memory pool and freeblock list, the other major data struc-
ture for your project will be two closed hash tables, one for accessing artist names and the
other for accessing song titles. For information on hash tables, see the chapter on Hashing in the
OpenDSA textbook. You will use the second string hash function described in the book, and you
will use simple quadratic probing for your collision resolution method (the i’th probe step will be i?
slots from the home slot). The key difference from what the book describes is that your hash tables
must be extensible. That is, you will start with a hash table of a certain size (defined when the
program starts). If the hash table exceeds 50% full, then you will replace the array with another
that is twice the size, and rehash all of the records from the old array. For example, say that the
hash table has 100 slots. Inserting 50 records is OK. When you try to insert the 51st record, you
would first re-hash all of the original 50 records into a table of 200 slots. Likewise, if the hash table
started with 101 slots, you would also double it (to 202) just before inserting the 51st record. The
hash table will actually store “handles” to the relevant data records that are currently stored in
the memory pool. A handle is the value returned by the memory manager when a request is made
to insert a new record into the memory pool. This handle is used to recover the record.

Invocation and I/0O Files:
The program will be invoked from the command-line as:
java Memman {initial-hash-size} {block-size} {command-file}

The name of the program is memman. Parameter {initial-hash-size} is the initial size of
the hash table (in terms of slots). Parameter {block-size} is the initial size of the memory pool
(in bytes). Whenever the memory pool has insufficient space to insert the next request, it will be
replaced by a new array that adds an additional {block-size} bytes. All data from the old array
will be copied over to the new array, the freeblock list will be updated appropriately, and then the
new string will be added.

Your program will read from text file {command-file} a series of commands, with one command
per line. The program should terminate after reading the end of the file. The formats for the
commands are as follows. The commands are free-format in that any number of spaces may come
before, between, or after the command name and its parameters. All commands should generate
a suitable output message (some have specific requirements defined below). All output should be
written to standard output. Every command that is processed should generate some sort
of output message to indicate whether the command was successful or not.

insert {artist-name}<SEP>{song-name}

Note that the characters <SEP> are literally a part of the string (this is how the raw data
actually comes to us, and we are preserving this to minimize inconsistencies in later projects), and
are used to separate the artist name from the song name. Check if {artist-name} appears in the
artist hash table, and if it does not, add it to the memory pool. Check if {song-name} appears in
the artist hash table, and if it does not, add it to the memory pool. You should print a message if
the insert causes the hash table or memory pool to expand in size.

remove {artist|song} {name}
Remove the specified artist or song name from the appropriate hash table and the memory pool.
Report the outcome (whether the name appears, and whether it was successfully removed).

print {artist|song|blocks}

Depending on the parameter value, you will print out either a complete listing of the artists
contained in the database, or the songs, or else the free block list for the memory manager. For
artists or songs, simply move sequentially through the associated hash table, retrieving the strings
and printing them in the order encountered (along with the slot number where it appears in the
hash table). Then print the total number of artists or total number of songs. If the parameter is
blocks, then print a listing of the freeblocks, in order of their occurrence in the freeblock list. For
each block, print its start position and its length.

Design Considerations:

Your main design concern for this project will be how to construct the interface for the memory
manager class. While you are not required to do it exactly this way, we recommend that your
memory manager class include something equivalent to the following methods.

// Constructor. poolsize defines the size of the memory pool in bytes
MemManager (int poolsize);

// Insert a record and return its position handle.
// space contains the record to be inserted, of length size.
Handle insert(bytel[] space, int size);

// Free a block at the position specified by theHandle.
// Merge adjacent free blocks.
void remove(Handle theHandle);

// Return the record with handle posHandle, up to size bytes, by
// copying it into space.

// Return the number of bytes actually copied into space.

int get(bytel[]l space, Handle theHandle, int size);

// Dump a printout of the freeblock list
void dumpQ);

Another design consideration is how to deal with the fact that the records are variable length.
One option is to encode the length in the record’s handle. An alternative is to store the record’s
length in the memory pool along with the record. Both implementations have advantages and
disadvantages. We will adopt the second approach.

The records stored in the memory pool must have the following format. The first two bytes
will be the (unsigned) length of the record, in (encoded) characters. Thus, the total length of a
record may not be more than 2'® = 65,536 characters or bytes. Following that will be the string
itself.

Programming Standards:

You must conform to good programming/documentation standards. Note that Web-CAT will
provide feedback on its evaluation of your coding style. While Web-CAT will not be used to define
your coding style grade, the grader will take note of Web-CAT’s style grade when evaluating your
style. Some specific advice on a good standard to use:

e You should include a header comment, preceding main(), specifying the compiler and oper-
ating system used and the date completed.

e Your header comment should describe what your program does; don’t just plagiarize language
from this spec.

e You should include a comment explaining the purpose of every variable or named constant
you use in your program.

e You should use meaningful identifier names that suggest the meaning or purpose of the
constant, variable, function, etc. Use a consistent convention for how identifier names appear,
such as “camel casing”.

e Always use named constants or enumerated types instead of literal constants in the code.

e Precede every major block of your code with a comment explaining its purpose. You don’t
have to describe how it works unless you do something so sneaky it deserves special recogni-
tion.

e You must use indentation and blank lines to make control structures more readable.

e Precede each function and/or class method with a header comment describing what the
function does, the logical significance of each parameter (if any), and pre- and post-conditions.

e Decompose your design logically, identifying which components should be objects and what
operations should be encapsulated for each.

Neither the GTAs nor the instructors will help any student debug an implementation unless
it is properly documented and exhibits good programming style. Be sure to begin your internal
documentation right from the start.

You may only use code you have written, either specifically for this project or for earlier pro-
grams, or the codebase provided by the instructor. Note that the textbook code is not designed
for the specific purpose of this assignment, and is therefore likely to require modification. It may,
however, provide a useful starting point.

Deliverables:

You will submit your project through the automated Web-CAT server. Links to the Web-CAT
client are posted at the class website. If you make multiple submissions, only your last submission
will be evaluated. There is no limit to the number of submissions that you may make.

You are required to submit your own test cases with your program, and part of your grade will
be determined by how well your test cases test your program, as defined by Web-CAT’s evaluation
of code coverage. Of course, your program must pass your own test cases. Part of your grade will
also be determined by test cases that are provided by the graders. Web-CAT will report to you
which test files have passed correctly, and which have not. Note that you will not be given a copy
of grader’s test files, only a brief description of what each accomplished in order to guide your own
testing process in case you did not pass one of our tests.

When structuring the source files of your project (be it in Eclipse as a “Managed Java Project,”
or in another environment), use a flat directory structure; that is, your source files will all be
contained in the project root. Any subdirectories in the project will be ignored. If you used a
makefile to compile your code, or otherwise did something that won’t automatically compile in
Eclipse, be sure to include any necessary files or instructions so that the TAs can compile it.

If submitting through Eclipse, the format of the submitted archive will be managed for you. If
you choose not to develop in Eclipse, you will submit either a ZIP-compressed archive (compatible
with Windows ZIP tools or the Unix zip command) or else a tar’ed and gzip’ed archive. Either
way, your archive should contain all of the source code for the project, along with any files or
instructions necessary to compile the code. If you need to explain any pertinent information to aid
the TA in the grading of your project, you may include an optional “readme” file in your submitted
archive.

You are permitted (and ecouraged) to work with a partner on this project. When you work with
a partner, then only one member of the pair will make a submission. Be sure both names are
included in the documentation. Whatever is the final submission from either of the pair members
is what we will grade unless you arrange otherwise with the GTA.

Pledge:

Your project submission must include a statement, pledging your conformance to the Honor
Code requirements for this course. Specifically, you must include the following pledge statement
near the beginning of the file containing the function main() in your program. The text of the
pledge will also be posted online.

// On my honor:

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

- I have
or any

not used source code obtained from another student,
other unauthorized source, either modified or

unmodified.

- A1l source code and documentation used in my program is

either
source

- I have
anyone

my original work, or was derived by me from the
code published in the textbook for this course.

not discussed coding details about this project with
other than my partner (in the case of a joint

submission), instructor, ACM/UPE tutors or the TAs assigned

to this course. I understand that I may discuss the concepts
of this program with other students, and that another student
may help me debug my program so long as neither of us writes
anything during the discussion or modifies any computer file

during
letter

the discussion. I have violated neither the spirit nor
of this restriction.

Programs that do not contain this pledge will not be graded.

