
Hash Functions

Data Structures & Algorithms

1

CS@VT ©2000-2009 McQuain

Hash Functions and Hash Tables
hash function a function that can take a key value and compute an integer value (or an

index in a table) from it

For example, student records for a class could be stored in an array C of dimension 10000
by truncating the student’s ID number to its last four digits:

H(IDNum) = IDNum % 10000

Given an ID number X, the corresponding record would be inserted at C[H(X)].

This would be easy to implement, and cheap to execute. Whether it's actually a very
good hash function is another matter…

Hash Functions

Data Structures & Algorithms

2

CS@VT ©2000-2009 McQuain

Hash Functions
Suppose we have N records, and a table of M slots, where N ≤ M.

- there are MN different ways to map the records into the table, if we don’t worry
about mapping two records to the same slot

- the number of different perfect mappings of the records into different slots in the
table would be

)!(
!),(
NM

MNMP

- for instance, if N = 50 and M = 100, there are 10100 different possible hash
mappings, “only” 1094 of which are perfect (1 in 1,000,000)

- so, there is no shortage of potential perfect hash functions (in theory)

- however, we need one that is effectively computable, that is, it must be possible to
compute it (so we need a formula for it) and it must be efficiently computable

- there are a number of common approaches, but the design of good, practical hash
functions must still be considered a topic of research and experiment

Hash Functions

Data Structures & Algorithms

3

CS@VT ©2000-2009 McQuain

Hash Function Domain Issues
The set of logically possible key values may be very large.

- set of possible Java identifiers of length 10 or less (xxx)

"possible"
key values

actual key
values

The set of key values we actually encounter when compiling a program will be much
smaller, but we don't know which values we'll actually see until we see them…

Hash Functions

Data Structures & Algorithms

4

CS@VT ©2000-2009 McQuain

Hash Function Domain Issues

So, the next best thing would be a
hash function that is "uniform".

That is, we'd like to map about the
same number of domain values to
each slot in the table… good luck with
that too…

F() may be
uniform on
the whole
theoretical
domain…

…but not at all uniform on the
small subset of it that we
actually get.

The ideal is a one-to-one hash function… good luck with that:

- take a reasonable table size for hashing the identifiers in a Java program

- consider the number of possible Java identifiers

- both sets are finite and the second is much, much larger

Hash Functions

Data Structures & Algorithms

5

CS@VT ©2000-2009 McQuain

Simple Hash Example
It is usually desirable to have the entire key value affect the hash result (so simply
chopping off the last k digits of an integer key is NOT a good idea in most cases).

Consider the following function to hash a string value into an integer range:

public static int sumOfChars(String toHash) {

int hashValue = 0;
for (int Pos = 0; Pos < toHash.length(); Pos++) {

hashValue = hashValue + toHash.charAt(Pos);
}
return hashValue;

}

Hashing: hash
h: 104
a: 97
s: 115
h: 104

Sum: 420

Mod by table
size to get the
index

This takes every element of the string into account… a string hash function that
truncated to the last three characters would compute the same integer for "hash",
"stash", "mash", "trash“.

Hash Functions

Data Structures & Algorithms

6

CS@VT ©2000-2009 McQuain

Hash Function Techniques
Division

- the first order of business for a hash function is to compute an integer value

- if we expect the hash function to produce a valid index for our chosen table size,
that integer will probably be out of range

- that is easily remedied by modding the integer by the table size

- there is some reason to believe that it is better if the table size is a prime, or at least
has no small prime factors

Folding

- portions of the key are often recombined, or folded together

- shift folding: 123-45-6789 123 + 456 + 789

- boundary folding: 123-45-6789 123 + 654 + 789

- can be efficiently performed using bitwise operations

- the characters of a string can be xor’d together, but small numbers result

- “chunks” of characters can be xor’d instead, say in integer-sized chunks

Hash Functions

Data Structures & Algorithms

7

CS@VT ©2000-2009 McQuain

Hash Function Techniques
Mid-square function

- square the key, then use the middle part as the result

- e.g., 3121 9740641 406 (with a table size of 1000)

- a string would first be transformed into a number, say by folding

- idea is to let all of the key influence the result

- if table size is a power of 2, this can be done efficiently at the bit level:

3121 100101001010000101100001 0101000010 (with a table size of 1024)

Extraction

- use only part of the key to compute the result

- motivation may be related to the distribution of the actual key values, e.g., VT
student IDs almost all begin with 904, so it would contribute no useful separation

Radix transformation

- change the base-of-representation of the numeric key, mod by table size

- not much of a rationale for it…

Hash Functions

Data Structures & Algorithms

8

CS@VT ©2000-2009 McQuain

Hash Function Design
A good hash function should:

- be easy and quick to compute

- achieve an even distribution of the key values that actually occur across the
index range supported by the table

- ideally be mathematically one-to-one on the set of relevant key values

Note: hash functions are NOT random in any sense.

Hash Functions

Data Structures & Algorithms

9

CS@VT ©2000-2009 McQuain

Improving Scattering
A simple hash function is likely to map two or more key values to the same integer
value, in at least some cases.

A little bit of design forethought can often reduce this:

public static int sumOfShiftedChars(String toHash) {

int hashValue = 0;
for (int Pos = 0; Pos < toHash.length(); Pos++) {

hashValue = (hashValue << 4) + toHash.charAt(Pos);
}
return hashValue;

}

Hashing: hash

h: 104

a: 97

s: 115

h: 104

Sum: 452760

Hashing: shah

s: 115

h: 104

a: 97

h: 104

Sum: 499320

The original version would
have hashed both of these
strings to the same table
index.

Flaw: it didn't take element
position into account.

Hash Functions

Data Structures & Algorithms

10

CS@VT ©2000-2009 McQuain

A Classic Hash Function for Strings
Consider the following function to hash a string value into an integer:

public static int elfHash(String toHash) {

int hashValue = 0;
for (int Pos = 0; Pos < toHash.length(); Pos++) { // use all elements

hashValue = (hashValue << 4) + toHash.charAt(Pos); // shift/mix

int hiBits = hashValue & 0xF0000000; // get high nybble

if (hiBits != 0)
hashValue ^= hiBits >> 24; // xor high nybble with second nybble

hashValue &= ~hiBits; // clear high nybble
}

return hashValue;
}

This was developed originally during the design of the UNIX operating system, for use
in building system-level hash tables.

Hash Functions

Data Structures & Algorithms

11

CS@VT ©2000-2009 McQuain

Details
Here's a trace:

Character hashValue

d: 64 00000064
i: 69 000006a9
s: 73 00006b03
t: 74 0006b0a4
r: 72 006b0ab2
i: 69 06b0ab89
b: 62 0b0ab892
u: 75 00ab8925
t: 74 0ab892c4
i: 69 0b892c09
o: 6f 0892c04f
n: 6e 092c05de

distribution: 15388030

hashValue : 06b0ab89
hashValue << 4: 6b0ab890
add 62 : 6b0ab8f2

hiBits : 60000000
hiBits >> 24 : 00000060

hashValue ^ 6b0ab8f2
hiBits 00000060

: 6b0ab892

hashValue &
~hiBits : 0b0ab892

f: 1111
6: 0110
^: 1001

