
Algorithm Analysis

Data Structures & Algorithms

1

CS@VT ©2000-2009 McQuain

Algorithms

algorithm: a finite set of instructions that specify a sequence of operations to be
carried out in order to solve a specific problem or class of problems

An algorithm must possess the following properties:

finiteness: Algorithm must complete after a finite number of
instructions have been executed.

absence of ambiguity: Each step must be clearly defined, having only one
interpretation.

definition of sequence: Each step must have a unique defined preceding &
succeeding step. The first step (start step) & last step (halt
step) must be clearly noted.

input/output: Number and types of required inputs and results must be
specified.

feasibility: It must be possible to perform each instruction.

Algorithm Analysis

Data Structures & Algorithms

2

CS@VT ©2000-2009 McQuain

Algorithms vs Programs

program: the concrete expression of an algorithm in a particular programming language

Given a problem to solve, the design phase produces an algorithm.

The implementation phase then produces a program that expresses the designed algorithm.

. .

. .

. .

p
r
o
b
l
e
m

algorithm 1

algorithm 2

algorithm k

. .
 .

. .

. .

. .

. .

. .

. .

program 1

program 2

program n

Algorithm Analysis

Data Structures & Algorithms

3

CS@VT ©2000-2009 McQuain

Design Considerations
Given a particular problem, there are typically a number of different algorithms that
will solve that problem. A designer must make a rational choice among those
algorithms.

Design considerations:

- to design an algorithm that is easy to understand, implement, and debug
(software engineering)

- to design an algorithm that makes efficient use of the available computational
resources (data structures and algorithm analysis)

We will be primarily concerned with the second area.

But, how do we measure the efficiency of an algorithm?

Note that the number of operations to be performed and the space required will depend on
the number of input values that must be processed.

Algorithm Analysis

Data Structures & Algorithms

4

CS@VT ©2000-2009 McQuain

Benchmarking
It is tempting to measure the efficiency of an algorithm by producing an
implementation and then performing benchmarking analyses by running the program
on input data of varying sizes and measuring the "wall clock" time for execution.

However:

- the program may be a poor representation of the algorithm's possibilities.

- the results will depend upon the particular characteristics of the hardware used
for the benchmarking, perhaps in subtle ways.

- the choice of test data may not provide a representative sampling of the
various factors that influence the algorithm's behavior

Algorithm Analysis

Data Structures & Algorithms

5

CS@VT ©2000-2009 McQuain

Complexity Analysis

Complexity analysis is the systematic study of the cost of a computation, measured either
in time units or in operations performed, or in the amount of storage space
required.

The goal is to have a meaningful measure that permits comparison of algorithms and/or
implementations independent of operating platform.

Complexity analysis involves two distinct phases:

- algorithm analysis: analysis of the algorithm or data structure to produce a
function T(n) measuring the complexity

- order of magnitude (asymptotic) analysis: analysis of the function T(n) to
determine the general complexity category to which it belongs.

Algorithm Analysis

Data Structures & Algorithms

6

CS@VT ©2000-2009 McQuain

Algorithm Analysis
Algorithm analysis requires a set of rules to determine how operations are to be counted.

There is no generally accepted set of rules for algorithm analysis.

In some cases, an exact count of operations is desired; in other cases, a general
approximation is sufficient.

The rules presented that follow are typical of those intended to produce an exact count of
operations.

Algorithm Analysis

Data Structures & Algorithms

7

CS@VT ©2000-2009 McQuain

Exact Analysis Rules
1. We assume an arbitrary time unit.
2. Execution of one of the following operations takes time 1:

a) assignment operation
b) single I/O operations
c) single Boolean operations, numeric comparisons
d) single arithmetic operations
e) function return
f) array index operations, pointer dereferences

3. Running time of a selection statement (if, switch) is the time for the condition
evaluation + the maximum of the running times for the individual clauses in the
selection.

4. Loop execution time is the sum, over the number of times the loop is executed, of
the body time + time for the loop check and update operations, + time for the loop
setup + the exit test.
Always assume that the loop executes the maximum number of iterations possible

5. Running time of a function call is 1 for setup + the time for any parameter
calculations + the time required for the execution of the function body.

Algorithm Analysis

Data Structures & Algorithms

8

CS@VT ©2000-2009 McQuain

Sum = 0;
In >> Value;

while (In) {

if (Value < 0) {
Sum = -Sum;
Sum = Sum + Value;

}
else {

Sum = Sum + Value;
}
In >> Value;

}

Analysis Example 1
Rule 2a: time 1 before loop Rule 2b: time 1 before loop

Rule 2c: time 1 on each pass,
once to exit loop

So, assuming n input values are received, the total time T(n) is given by:

 371)2,4max(32)(
1

nnT
n

k

Rule 2c: time 1 at beginning
of each pass, and once more

Rules 2ad: time 2, if done

Rules 2ad: time 2, if done

Rules 2ad: time 2, if done

Rules 2ad: time 1 on each
pass

Algorithm Analysis

Data Structures & Algorithms

9

CS@VT ©2000-2009 McQuain

Analysis Example 2
for (i = 0; i < n-1; i++) {

for (j = 0; j <= i; j++) {
aray[i][j] = 0;

}
}

for (i = 0; i < n-1; i++) {

for (j = 0; j <= i; j++) {

aray[i][j] = 0;
}

}

Rules 4 and
2a: time 1
before loop

Rules 4, 2c and 2d: time 3
on each iteration of outer loop,
and one more test to exit

Rules 4, 2c and 2d: time 2
(on each iteration of inner loop)
and one more test to exitRules 4 and 2a: time 1 on each

iteration of outer loop

Rule 2a and 2f: time 3
on each pass of inner
loop

Given:

So, the total time T(n) for n >= 1 is given by:

2
2

0 0

5 5() 1 4 5 1 2 2
2 2

n i

i j
T n n n

Algorithm Analysis

Data Structures & Algorithms

10

CS@VT ©2000-2009 McQuain

Analysis Example 2 Details

Here's the simplification:

2 2

0 0 0 0

2 2

0 1 0

2

1

() 1 4 5 1 2 5 5 3 collecting terms

5 5 5 3 10 5 3 splitting out j=0 case

10 10 5 3

n i n i

i j i j

n i n

i j i

n

i

T n

i

i

2

 splitting out i=0 case

(2)(1)10(2) 5 13
2

5 5 2
2 2

n nn

n n

Algorithm Analysis

Data Structures & Algorithms

11

CS@VT ©2000-2009 McQuain

Analysis Example 3

Sum = 0;

for (k = 1; k <= n; k = 2*k) {

for (j = 1; j <= n; j++) {

Sum++;
}

}

Rule 2a: time
1 before loop

Rules 4, 2c and 2d: time 3
on each iteration of outer
loop, plus one more test

Rules 4, 2c and 2d: time 2
(on each iteration of inner
loop) plus one more testRules 4 and 2a: time 1 on each

iteration of outer loop

Rule 2a: time 1 on
each pass of inner
loop

Rules 4 and
2a: time 1
before loop

The tricky part is that the outer loop will be executed about log(n) times. Precisely, since n
equals 2log(n), we can argue that if p is the number of the current pass (numbering starting
at 1) then:

 npnpnpnk np log1log1log122 log1

Here, x is the largest integer that’s less than or equal to x, commonly called the floor.

Algorithm Analysis

Data Structures & Algorithms

12

CS@VT ©2000-2009 McQuain

Analysis Example 3

If we assume that n is a power of 2, the floor notation may be dropped. It is common to do
so when expressing complexity functions, since the difference is minor.

 8log53log311342)(
log1

1 1

nnnnnT
n

p

n

j

So, the total time T(n) for the previous algorithm is given by:

Algorithm Analysis

Data Structures & Algorithms

13

CS@VT ©2000-2009 McQuain

int linearSearch(int List[], int Target, int Sz) {

for (int i = 0; i < Sz; i++) { // 1 before, 2 each pass, 1 exit
if (Target == List[i]) // 2

return i; // 1, if done
}

return Sz; // 1, if done
}

Analysis Example 4
Now let’s consider a simple linear search function:

1

0
341141)(

N

i
NNT

The worst-case cost would be incurred if Target does not occur in List. In that case:

The best-case cost would be incurred if Target occurs at index 0 in List. In that case:

5)(NT

Algorithm Analysis

Data Structures & Algorithms

14

CS@VT ©2000-2009 McQuain

Analysis Example 4
What about the average cost? If Target occurs at index K in List, the cost of the search would
be:

1

0

5412141),(
K

i

KKNT

The average-case cost, assuming Target is in List would be:

The true average-case cost would depend on the probability that Target does occur in the
list. Obviously, the cost of the search when Target is not in the list would be worst case
cost found earlier. But the true average cost would depend on how many searches did
achieve the worst case performance.

325
2

)1(41)54(1)(
1

0

NNNN
N

K
N

NT
N

K

As a side note, if we only count comparisons of data objects, the average-case cost,
assuming Target is in List would be:

2
1)(

NNC

Algorithm Analysis

Data Structures & Algorithms

15

CS@VT ©2000-2009 McQuain

int binSearch(int List[], int Target, int Sz) {

unsigned int Mid,
Lo = 0, // 1
Hi = Sz – 1; // 2

while (Lo <= Hi) { // 1 per pass + 1 for exit, if done

Mid = (Lo + Hi) / 2; // 3

if (List[Mid] == Target) // 2
return Mid; // 1, if done

else if (Target < List[Mid]) // 2, if done
Hi = Mid – 1; // 2, if done

else
Lo = Mid + 1; // 2, if done

}

return Sz; // 1, if done
}

Analysis Example 5
Now let’s consider a simple binary search function:

The worst-case cost of one pass through the loop is easily seen to be 10...

Algorithm Analysis

Data Structures & Algorithms

16

CS@VT ©2000-2009 McQuain

Analysis Example 5
… but how many passes will be required, in the worst case?

Consider the loop condition in this form: Hi – Lo >= 0

Each pass through the loop (worst case) either raises Lo or lowers Hi. No matter which
is done, simple algebra reveals that the successive loop tests are just:

1
2

 LoHi

2
3

4

 LoHi
4
7

8

 LoHi
8

15
16

 LoHi

The denominator is 2p where p is the number of the pass about to be performed (starting
with p = 0). The constant term is bounded by 2.

Now, from the initializations of Hi and Lo, the value of Hi – Lo is just Sz – 1. So,
the question is essentially, when will we achieve:

12
12

2
1

pp

Sz

That’s messy, but it’s easy enough to show we need 11log2 Szp

So, the binary search function is about: 5)1log(10)(NNT

Algorithm Analysis

Data Structures & Algorithms

17

CS@VT ©2000-2009 McQuain

Why Does Complexity Matter?

Consider the following chart of some simple complexity functions:

n log n n n log n n^2 n 3̂ 2^n
1 0 1 0 1 1 2.E+00

10 3 10 33 100 1000 1.E+03
20 4 20 86 400 8000 1.E+06
30 5 30 147 900 27000 1.E+09
40 5 40 213 1600 64000 1.E+12
50 6 50 282 2500 125000 1.E+15
60 6 60 354 3600 216000 1.E+18
70 6 70 429 4900 343000 1.E+21
80 6 80 506 6400 512000 1.E+24
90 6 90 584 8100 729000 1.E+27

100 7 100 664 10000 1000000 1.E+30

Algorithm Analysis

Data Structures & Algorithms

18

CS@VT ©2000-2009 McQuain

Running Time Estimation

Suppose we have hardware capable of executing 106 instructions per second.

How long would it take to execute an algorithm whose complexity function was:

on an input of size N = 108?

The total number of operations to be performed would be T(108):

2)(NNT

16288 10)10()10(T

The total number of seconds required would be given by T(108)/106 so:

10616 1010/10Time Running

The number of seconds/day is 86,400 so this is about 115,740 days (317 years).

Algorithm Analysis

Data Structures & Algorithms

19

CS@VT ©2000-2009 McQuain

Running Time Estimation

What if we used an algorithm whose complexity function was:

on an input of size N = 108?

The total number of operations to be performed would be T(108):

NNNT log)(

9888 1066.2)10log()10()10(T

The total number of seconds required would be given by T(108)/106 so:

369 1066.210/1066.2Time Running

This is about 44.33 minutes.

Algorithm Analysis

Data Structures & Algorithms

20

CS@VT ©2000-2009 McQuain

Maximum Problem Size

Another way of looking at this is to ask, what is the largest problem size that can be
handled in a given amount of time, given a complexity function for an algorithm and
the hardware speed?

Assuming the same hardware speed as before, what's the largest input size that could be
handled in one hour, if the complexity function is once again:

2)(NNT

3600
10

)(
6

NT

The total number of seconds required would again be given by T(N)/106 so we're
asking what is the maximum value of N for which:

This yields

or 62 103600N

000,60N

Algorithm Analysis

Data Structures & Algorithms

21

CS@VT ©2000-2009 McQuain

Maximum Problem Size

Applying the same logic, with the complexity function: NNNT log)(

The total number of seconds required would be T(N)/106 so we're asking what is the
maximum value of N for which:

The first moral is that for large N, the complexity function matters.

The minor first moral is that for large N, Nlog(N) is a LOT faster than N2.

The second moral involves applying this logic to the question of hardware speedup…

Solving for equality (Newton's Method) yields about

6103600log NN

000,000,133N

Algorithm Analysis

Data Structures & Algorithms

22

CS@VT ©2000-2009 McQuain

Faster Hardware?
If we apply the same analysis, assuming that we can now find hardware that is, say, 100
times faster than the previous hardware (so 108 operations per second), the results are
revealing:

T(N) time for N = 108 max N in 1 hour

N log(N) .4433 minutes ~10 billion

N2 3.17 years ~600,000

Comparing to the earlier results, speeding up the hardware by a factor of 100:

- reduces time for same sized problem by a factor of 100 in both cases, so the
relative advantage of the N log(N) algorithm is retained

- increases the max problem size by a factor of 10 for the N2 case, versus a
factor of almost 75 for the N log(N) case

