A graph G consists of a set V of vertices and a set E of pairs of distinct vertices from V. These pairs of vertices are called edges.

If the pairs of vertices are unordered, G is an undirected graph. If the pairs of vertices are ordered, G is a directed graph or digraph.
An undirected graph G, where:

\[V = \{a, b, c, d, e, f, g, h, i\} \]

\[E = \{\{a, b\}, \{a, c\}, \{b, e\}, \{b, h\}, \{b, i\}, \{c, d\}, \{c, e\}, \{e, f\}, \{e, g\}, \{h, i\}\} \]

$e = \{c, d\}$ is an edge, incident upon the vertices c and d

Two vertices, x and y, are adjacent if $\{x, y\}$ is an edge (in E).

A path in G is a sequence of distinct vertices, each adjacent to the next.

A path is simple if no vertex occurs twice in the path.

A cycle in G is a path in G, containing at least three vertices, such that the last vertex in the sequence is adjacent to the first vertex in the sequence.
A graph G is **connected** if, given any two vertices x and y in G, there is a path in G with first vertex x and last vertex y.

The graph on the previous slide is connected.

If a graph G is not connected, then we say that a maximal connected set of vertices is a **component** of G.
Directed Graph Terminology

The terminology for directed graphs is only slightly different…

\[e = (c, d) \] is an edge, from \(c \) to \(d \)

A directed path in a directed graph \(G \) is a sequence of distinct vertices, such that there is an edge from each vertex in the sequence to the next.

A directed graph \(G \) is weakly connected if, the undirected graph obtained by suppressing the directions on the edges of \(G \) is connected (according to the previous definition).

A directed graph \(G \) is strongly connected if, given any two vertices \(x \) and \(y \) in \(G \), there is a directed path in \(G \) from \(x \) to \(y \).
Adjacency Matrix Representation

A graph may be represented by a two-dimensional adjacency matrix:

If G has $n = |V|$ vertices, let M be an n by n matrix whose entries are defined by

$$m_{ij} = \begin{cases}
1 & \text{if } (i, j) \text{ is an edge} \\
0 & \text{otherwise}
\end{cases}$$

$$M(G) = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$
The adjacency matrix:

- \(\Theta(1) \) to determine existence of a specific edge
- \(\Theta(|V|^2) \) storage cost (cut cost by 75% or more by changing types)
- \(\Theta(|V|) \) for finding all vertices accessible from a specific vertex
- \(\Theta(1) \) to add or delete an edge
- Not easy to add or delete a vertex; better for static graph structure.
- Symmetric matrix for undirected graph; so half is redundant then.

\[
M(G) = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]
Adjacency Table Representation

A slightly different approach is to represent only the adjacent nodes in the structure:

```
0 |  1  2
1 |  4  7  8
2 |  0  3  4
3 |
4 |  1  6
5 |  4
6 |
7 |  1  8
8 |
```
The adjacency list structure is simply a linked version of the adjacency table:

Array of linked lists, where list nodes store node labels for neighbors.
Adjacency List Representation

The adjacency list structure:

- Worst case: $\Theta(|V|)$ to determine existence of a specific edge
- $\Theta(|V| + |E|)$ storage cost
- Worst case: $\Theta(|V|)$ for finding all neighbors of a specific vertex
- Worst case: $\Theta(|V|)$ to add or delete an edge
- Still not easy to add or delete a vertex; however, we can use a linked list in place of the array.

Note, for an undirected graph, the upper bound on the number of edges is:

$$|E| \leq |V|*(|V|-1)$$

So, the space comparison with the adjacency matrix scheme is not trivial.
An Adjacency Matrix Class

```java
public class AdjMatrix {

    private int numVertices;
    private boolean[] Marker;  // used for vertex marking
    private int[][] Edge;      // Edge[i][j] == 1 iff (i,j) exists

    public AdjMatrix(int numV) {...

    public boolean addEdge(int Src, int Trm) {...
    public boolean delEdge(int Src, int Trm) {...
    public boolean hasEdge(int Src, int Trm) {...

    public int firstNeighbor(int Src) {...
    public int nextNeighbor(int Src, int Prev) {...

    public boolean isMarked(int V) {...
    public boolean Mark(int V) {...
    public boolean unMark(int V) {...

    public void Clear() {...
        // erase edges and vertex marks
    public void Display() {...
```