
C Basics 1

 Computer Organization I CS@VT ©2005-2015 WD McQuain

A History Lesson

Development of language by Dennis Ritchie at Bell Labs culminated in the C language

in 1972.

Motivation was to facilitate development of systems software, especially OS

development.

Traditionally, supports a procedural view of problem analysis.

Formal language Standard adopted in 1990; required compromises because of vast body

of existing C code based on a more-or-less common understanding of the language.

Significant revision, ISO/IEC 9899:1999 or simply C99 if you like, was adopted in 1999.

My presentation will be based on the C99 Standard… most C compilers now support

most of that Standard.

C Basics 2

 Computer Organization I CS@VT ©2005-2015 WD McQuain

The First Program

#include <stdio.h> // load declarations of std

 // library functions for I/O

int main() { // mandatory fn

 printf("Hello, world!\n"); // output to console

 return 0; // exit fn (& pgm)

}

Since tradition demands it:

Note: #include loads declarations from standard C library (and more)

 Every C program must have a non-member fn called main().

 main() must be declared with a return type of int.

C Basics 3

 Computer Organization I CS@VT ©2005-2015 WD McQuain

The Preprocessor

When a C compiler is invoked, the first thing that happens is that the code is parsed and

modified by a preprocessor.

The preprocessor handles a collection of commands (commonly called directives), which

are denoted by the character '#'.

#include directives specify an external file (for now a C library file); the preprocessor

essentially copies the contents of the specified file in place of the directive.

We will see more interesting preprocessor directives later.

#include <stdio.h>

. . .

int main() {

 printf("Hello, world!\n");

 return 0;

}

Contents of file stdio.h are copied here.

C Basics 4

 Computer Organization I CS@VT ©2005-2015 WD McQuain

The C Standard Library

The C Standard Library includes a fairly large collection of types and functions.

The declarations of these are placed into a collection of header files, which are part of

the distribution of every C compiler.

The implementations are placed into a collection of C source files, which are then pre-

compiled into binary library files (also part of every C compiler distribution).

C programmers incorporate portions of the Standard Library into their programs by
making use of #include directives.

C Basics 5

 Computer Organization I CS@VT ©2005-2015 WD McQuain

What's the Same as Java (more or less)

Naming rules are the same. But… customary conventions differ.

Declaration syntax is the same but semantics are different.

Scoping rules are similar, within a file at least.

Many reserved words are the same, with the same meanings, but ALL (almost) reserved

words in C and ALL (almost) Standard Library identifiers are purely lower-case.

Operator symbols and expressions are generally the same.

The basic control structures (if, for, while, . . .) have same syntax and semantics.

Function call/return syntax and semantics are the same; as with Java, function parameters

can only be passed into a function by value.

C Basics 6

 Computer Organization I CS@VT ©2005-2015 WD McQuain

Conditionals and Loops

C includes the same set of conditional and loop statement forms as Java:

 if…

 if…else…

 switch…

 while…

 for…

 do…while…

C also has a goto statement for unconditional branching.

Thou shalt not goto.

C Basics 7

 Computer Organization I CS@VT ©2005-2015 WD McQuain

C Philosophy

The stated goal of the designers of the C language is:

Correct code should execute as fast as possible on the underlying hardware.

Of course, good programmers write only correct code…

… and only good programmers should be writing code.

C Basics 8

 Computer Organization I CS@VT ©2005-2015 WD McQuain

All built-in C types are primitives; there are no class types in the language.

In C there is no notion of a member function.

A C program is a collection of functions that call one another, not a collection of classes

and objects that use one another's services.

In C, every variable may be allocated dynamically, or not; it's up to you to decide.

Scope rules are slightly different; a name declared within a block is strictly local to the

block.

In most cases, C variables are not automatically initialized at all; you may initialize them

yourself when you declare them. (Linux, however…)

Core Differences vs Java

C Basics 9

 Computer Organization I CS@VT ©2005-2015 WD McQuain

Variable Declarations

All declared objects are (by default) statically allocated (not dynamically). Thus, the
following declaration results in X and Y being objects of type int, not references to

objects:

 int X = 6,

 Y = 28;

This has many consequences:

 - assigning X to Y does not result in an alias;

rather X becomes a copy of Y, but is still an

entirely different object; just like Java

primitives, and unlike Java objects

 - using X as a parameter to a function does

not allow the function to modify X

 - logically, you can only initialize declared

objects to 0 if they are numeric types

Memory

X 6

Y 28

Memory

X 6

Y 6

C Basics 10

 Computer Organization I CS@VT ©2005-2015 WD McQuain

Automatic Variable Initialization

Variables are not (usually) automatically initialized.

The compiler will not check for use of a variable before it has been initialized.

 int X, Y;

 Y = 2*X + 1;

This is a common source of errors in C programs and is easily avoided.

Note: when Linux allocates memory to a process, it may write zeros into that memory,

which has the effect of initializing variables stored within that memory to 0; you should

never count on that to save you.

Memory

X ??

Y ????

C Basics 11

 Computer Organization I CS@VT ©2005-2015 WD McQuain

Boolean Variables

C initially did not have a Boolean type.

Integer values can be used as Booleans; zero is interpreted as false and all other values are

interpreted as true.

Modern C includes a _Bool type which is aliased to bool.

Every expression in C has a value (well-defined or not). Hence, the following is valid

code:

 if (x = 42)

 // always executes the if-clause

C Basics 12

 Computer Organization I CS@VT ©2005-2015 WD McQuain

C Primitive Types

Standard C provides a plethora of primitive types. These store single values, and are most

definitely not objects in the Java sense. In particular, there is no guarantee of automatic

initialization.

Integer types Probable characteristics

 int 32-bits

 unsigned int 32-bits

 short (int) 16-bits

 unsigned short (int) 16-bits

 long (int) 32-bits

 unsigned long (int) 32-bits

Floating-point types Conforming implementations provide:

 float 32-bit IEEE single-precision type

 double 64-bit IEEE double-precision type

#include <stdint.h>

int8_t uint8_t

int16_t uint16_t

int32_t uint32_t

int64_t uint64_t

C Basics 13

 Computer Organization I CS@VT ©2005-2015 WD McQuain

C Primitive Types

Character types Probable characteristics

 char 1-byte, ASCII code

 unsigned char 1-byte, unsigned integer

Logical types Probable characteristics

 bool 1-byte, value either true or false

 <stdbool.h>

 (really _Bool, but standard macro provides alias)

The primitive types, except as noted, are all available without any inclusions from the

Standard Library.

C Basics 14

 Computer Organization I CS@VT ©2005-2015 WD McQuain

Same syntax as Java.

Semantics are generally the same as well, although the C Standard leaves the result of a

number of unwise constructs undefined.

For example:

 int x = 5;

 x = x++ * x++;

Now, the C Standard leaves the result of executing that statement undefined. If you want

a very detailed and interesting discussion of why this is so, take a look at:

http://c-faq.com/~scs/readings/undef.950321.html

My take on the issue is that such expressions are generally "stupid" and unlikely to be

used in real code…

C Arithmetic Operators

Precedence rules are the same as Java.

Precedence can be forced (and disambiguated) by use of parentheses.

C Basics 15

 Computer Organization I CS@VT ©2005-2015 WD McQuain

Creating User-defined Types

public Class Rational {

 private int top;

 private int bottom;

 public Rational(...) {

 ...

 }

 ...

}

Java C

struct _Rational {

 int top;

 int bottom;

};

typedef struct _Rational Rational;

Rational Rational_Create(...) {

 ...

}

...

Classes:

 - data and fn members

 - member access control enforced by

compiler

 - automatic initialization

(constructor must be invoked when

object is created)

struct types:

 - data members only

 - member access control enforced by

programmer discipline (or not)

 - initialization only if programmer

remembers to do it

C Basics 16

 Computer Organization I CS@VT ©2005-2015 WD McQuain

Memory Management

Objects which are allocated dynamically are not automatically deallocated (at least, not

until the program terminates execution).

Deallocating them efficiently is the responsibility of the programmer.

For now, we’ll examine one simple case to illustrate the difference.

C Basics 17

 Computer Organization I CS@VT ©2005-2015 WD McQuain

Java Object Creation

public Class Rational {

 private int top;

 private int bottom;

 public Rational(...) {

 ...

 }

 ...

}

public void Calculate (...) {

 Rational r1 = new Rational(...); // MUST alloc with new

 ...

 r1 = new Rational(...); // Just discard old object.

 ...

 // Dynamically-allocated objects are automatically reclaimed

 // (eventually) by the Java GC system... no worries!

}

C Basics 18

 Computer Organization I CS@VT ©2005-2015 WD McQuain

C Object Creation I

void Calculate (...) {

 Rational r1 = Rational_Create(...); // CAN create statically

 ...

 r1 = Rational_Create(...); // Just discard old object.

 ...

 // Statically-allocated objects are automatically reclaimed

 // when the function terminates... no worries!

}

struct _Rational {

 int top;

 int bottom;

};

typedef struct _Rational Rational;

Rational Rational_Create(...) {

 ...

}

...

C Basics 19

 Computer Organization I CS@VT ©2005-2015 WD McQuain

C Object Creation II

void Calculate (...) {

 Rational* r1 = malloc(...); // CAN create dynamically

 ...

 free(r1); // MUST explicitly destroy dynamic object

 r1 = malloc(...); // before losing access to it

 ...

 // Dynamically-allocated objects are never automatically

 // reclaimed when fn terminates... worries!

}

struct _Rational {

 int top;

 int bottom;

};

typedef struct _Rational Rational;

Rational Rational_Create(...) {

 ...

}

...

