
CS@VT October 2009 ©2006-09 McQuain, Feng & Ribbens

Intro Assembly

Computer Organization I

1MIPS Hello World
PROGRAM: Hello, World!

.data # Data declaration section

out_string: .asciiz "\nHello, World!\n"

.text # Assembly language instructions

main: # Start of code section
li $v0, 4 # system call code for printing string = 4
la $a0, out_string # load address of string to be printed into $a0
syscall # call operating system to perform operation in $v0

syscall takes its arguments from $a0, $a1, ...

This illustrates the basic structure of an assembly language program.
- data segment and text segment
- use of label for data object (which is a zero-terminated ASCII string)
- use of registers
- invocation of a system call

CS@VT October 2009 ©2006-09 McQuain, Feng & Ribbens

Intro Assembly

Computer Organization I

2MIPS Register Names
MIPS assemblers support standard symbolic names for the general-purpose registers:

$zero stores value 0; cannot be modified
$v0-1 used for system calls and procedure return values
$a0-3 used for passing arguments to procedures
$t0-9 used for local storage; caller saves
$s0-7 used for local storage; procedure saves

$sp stack pointer
$fp frame pointer; primarily used during stack manipulations
$ra used to store return address in procedure call
$gp pointer to area storing global data (data segment)

$at reserved for use by the assembler
$k0-1 reserved for use by OS kernel

CS@VT October 2009 ©2006-09 McQuain, Feng & Ribbens

Intro Assembly

Computer Organization I

3MIPS Arithmetic Instructions
All arithmetic and logical instructions have 3 operands

Operand order is fixed (destination first):

<opcode> <dest>, <leftop>, <rightop>

Example:

C code: a = b + c;

MIPS code: add $s0, $s3, $s2

“The natural number of operands for an operation like addition is three…requiring every
instruction to have exactly three operands, no more and no less, conforms to the
philosophy of keeping the hardware simple”

CS@VT October 2009 ©2006-09 McQuain, Feng & Ribbens

Intro Assembly

Computer Organization I

4Basic MIPS Arithmetic Instructions

add $rd,$rs,$rt Addition with overflow

GPR[rd] <-- GPR[rs] + GPR[rt]
div $rs,$rt Division with overflow

$lo <-- GPR[rs]/GPR[rt]

$hi <-- GPR[rs]%GPR[rt]
mul $rd,$rs,$rt Multiplication without overflow

GPR[rd] <-- (GPR[rs]*GPR[rt])[31:0]
sub $rd,$rs,$rt Subtraction with overflow

GPR[rd] <-- GPR[rs] - GPR[rt]

Here are the most basic arithmetic instructions:

Instructions "with overflow" will generate an runtime exception if the computed result is
too large to be stored correctly in 32 bits.

There are also versions of some of these that essentially ignore overflow, like addu.

CS@VT October 2009 ©2006-09 McQuain, Feng & Ribbens

Intro Assembly

Computer Organization I

5Limitations and Trade-offs

Design Principle: simplicity favors regularity.

Design Principle: smaller is faster.

Why?

Operands must be registers (or immediates), only 32 registers are
provided
Each register contains 32 bits

Of course this complicates some things...

C code: a = b + c + d;

MIPS pseudo-code: add $s0, $s1, $s2
add $s0, $s0, $s3

CS@VT October 2009 ©2006-09 McQuain, Feng & Ribbens

Intro Assembly

Computer Organization I

6Immediates
In MIPS assembly, immediates are literal constants.

Many instructions allow immediates to be used as parameters.

addi $t0, $t1, 42 # note the opcode
li $t0, 42 # actually a pseudo-instruction

Note that immediates cannot be used with all MIPS assembly instructions; refer to your
MIPS reference card.

Immediates may also be expressed in hexadecimal: 0x2A

CS@VT October 2009 ©2006-09 McQuain, Feng & Ribbens

Intro Assembly

Computer Organization I

7MIPS Logical Instructions
Logical instructions also have three operands and the same format as the arithmetic
instructions:

<opcode> <dest>, <leftop>, <rightop>

Examples:

and $s0, $s1, $s2 # bitwise AND

andi $s0, $s1, 42
or $s0, $s1, $s2 # bitwise OR
ori $s0, $s1, 42

nor $s0, $s1, $s2 # bitwise NOR (i.e., NOT OR)
sll $s0, $s1, 10 # logical shift left
srl $s0, $s1, 10 # logical shift right

CS@VT October 2009 ©2006-09 McQuain, Feng & Ribbens

Intro Assembly

Computer Organization I

8MIPS Load and Store Instructions
Transfer data between memory and registers

Example:

C code: A[12] = h + A[8];

MIPS code: lw $t0, 32($s3) # $t0 <-- Mem[$s3+32]
add $t0, $s2, $t0
sw $t0, 48($s3) # Mem[$s3+48] <-- $t0

Can refer to registers by name (e.g., $s2, $t2) instead of number

Load command specifies destination first: opcode <dest>, <address>

Store command specifies destination last: opcode <dest>, <address>

Remember arithmetic operands are registers or immediates, not memory!

Can’t write: add 48($s3), $s2, 32($s3)

CS@VT October 2009 ©2006-09 McQuain, Feng & Ribbens

Intro Assembly

Computer Organization I

9Addressing Modes
In register mode the address is simply the value in a register:

lw $t0, ($s3)

In immediate mode the address is simply an immediate value in the instruction:

lw $t0, 0 # almost always a bad idea

In base + register mode the address is the sum of an immediate and the value in a
register:

lw $t0, 100($s3)

There are also various label modes:

lw $t0, absval
lw $t0, absval + 100
lw $t0, absval + 100($s3)

CS@VT October 2009 ©2006-09 McQuain, Feng & Ribbens

Intro Assembly

Computer Organization I

10

MIPS unconditional branch instructions:

j Label # PC = Label
b Label # PC = Label
jr $ra # PC = $ra

Unconditional Branch Instructions

These are useful for building loops and conditional control structures.

CS@VT October 2009 ©2006-09 McQuain, Feng & Ribbens

Intro Assembly

Computer Organization I

11

Decision making instructions
- alter the control flow,
- i.e., change the "next" instruction to be executed

MIPS conditional branch instructions:

bne $t0, $t1, <label> # branch on not-equal
PC += 4 + Label if

$t0 != $t1
beq $t0, $t1, <label> # branch on equal

Labels are strings of alphanumeric characters, underscores and periods, not
beginning with a digit. They are declared by placing them at the beginning
of a line, followed by a colon character.

Conditional Branch Instructions

if (i == j)
h = i + j;

bne $s0, $s1, Miss
add $s3, $s0, $s1

Miss:

CS@VT October 2009 ©2006-09 McQuain, Feng & Ribbens

Intro Assembly

Computer Organization I

12Conditional Control Structure

if (i < j)
goto A;

else
goto B;

$s3 == i, $s4 == j
slt $t1, $s3, $s4
beq $zero, $t1, B

A: # code...
b C

B: # code...
C:

