
X86-64 Control Structures

Computer Organization I

1

CS@VT ©2005-2019 McQuain

Credits and Disclaimers

The examples and discussion in the following slides have been adapted from a

variety of sources, including:

Chapter 3 of Computer Systems 3nd Edition by Bryant and O'Hallaron

x86 Assembly/GAS Syntax on WikiBooks

(http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax)

Using Assembly Language in Linux by Phillip ??

(http://asm.sourceforge.net/articles/linasm.html)

The C code was compiled to assembly with gcc version 4.8.3 on CentOS 7.

Unless noted otherwise, the assembly code was generated using the following

command line:

gcc –S –m64 -fno-asynchronous-unwind-tables –mno-red-zone –O0 file.c

AT&T assembly syntax is used, rather than Intel syntax, since that is what the gcc

tools use.

X86-64 Control Structures

Computer Organization I

2

CS@VT ©2005-2019 McQuain

Comparing Operands

The compare instruction facilitates the comparison of operands:

cmpl rightop, leftop

The instruction performs a subtraction of its operands, discarding the result.

The instruction sets flags in the machine status word register (EFLAGS) that

record the results of the comparison:

CF carry flag; indicates overflow for unsigned operations

OF overflow flag; indicates operation caused 2's complement overflow

SF sign flag; indicates operation resulted in a negative value

ZF zero flag; indicates operation resulted in zero

For our purposes, we will most commonly check these codes by using the various

jump instructions.

X86-64 Control Structures

Computer Organization I

3

CS@VT ©2005-2019 McQuain

Conditional Jump Instructions

The conditional jump instructions check the relevant EFLAGS flags and jump to

the instruction that corresponds to the label if the flag is set:

make jump if last result was:

je label # zero

jne label # nonzero

js label # negative

jns label # nonnegative

jg label # positive (signed >)

jge label # nonnegative (signed >=)

jl label # negative (signed <)

jle label # nonpositive (signed <=)

ja label # above (unsigned >)

jae label # above or equal (unsigned >=)

jb label # below (unsigned <)

jbe label # below or equal (unsigned <=).

X86-64 Control Structures

Computer Organization I

4

CS@VT ©2005-2019 McQuain

C to Assembly: if

. . .

movl $5, -8(%rbp)

cmpl $0, -4(%rbp)

js .L1

addl $1, -8(%rbp)

.L1: . . .

. . .

int y = 5;

if (x >= 0) {

y++;

}

. . .

gcc -S –m64 –O0 if.c

X86-64 Control Structures

Computer Organization I

5

CS@VT ©2005-2019 McQuain

C to Assembly: if

. . .

movl $5, -8(%rbp) # y = 5

cmpl $0, -4(%rbp) # compare x to 0

js .L1 # goto .L1 if negative

addl $1, -8(%rbp) # y++

.L1:

. . .

. . .

int y = 5;

if (x < 0) goto L1;

y++;

L1:

. . .

X86-64 Control Structures

Computer Organization I

6

CS@VT ©2005-2019 McQuain

C to Assembly: if…else

. . .

movl $5, -8(%rbp)

cmpl $0, -4(%rbp)

js .L4

addl $1, -8(%rbp)

jmp .L3

.L4:

subl $1, -8(%rbp)

.L3:

. . .

. . .

int y = 5;

if (x >= 0)

y++;

else

y--;

. . .

gcc -S –m64 –O0 ifelse.c

X86-64 Control Structures

Computer Organization I

7

CS@VT ©2005-2019 McQuain

C to Assembly: if…else

. . .

movl $5, -8(%rbp) # y = 5

cmpl $0, -4(%rbp) # compare x to 0

js .L4 # goto .L2 if negative

addl $1, -8(%rbp) # y++

jmp .L3 # goto .L3 after y++

.L4:

subl $1, -8(%rbp) # y--

.L3:

. . .

gcc -S –m64 –O0 ifelse.c

. . .

int y = 5;

if (x < 0) goto L4;

y++;

goto L3;

L4: y--;

L3:

. . .

X86-64 Control Structures

Computer Organization I

8

CS@VT ©2005-2019 McQuain

C to Assembly: do…while

. . .

movl $0, -8(%rbp)# y = 0

.L2:

addl $1, -8(%rbp)# y++

subl $1, -4(%rbp)# x--

cmpl $0, -4(%rbp)# compare x to 0

jg .L2 # goto .L2 if positive

. . .

. . .

int y = 0;

do {

y++;

x--;

} while (x > 0);

. . .

gcc -S –m64 –O0 dowhile.c

X86-64 Control Structures

Computer Organization I

9

CS@VT ©2005-2019 McQuain

. . .

movl $0, -8(%rbp)# y = 0

.L2:

addl $1, -8(%rbp)# y++

subl $1, -4(%rbp)# x--

cmpl $0, -4(%rbp)# compare x to 0

jg .L2 # goto .L2 if positive

. . .

. . .

int y = 0;

L2:

y++;

x--;

if (x > 0) goto L2;

. . .

C to Assembly: do…while

gcc -S –m64 –O0 dowhile.c

X86-64 Control Structures

Computer Organization I

10

CS@VT ©2005-2019 McQuain

. . .

movl $0, -8(%rbp) # y = 0

jmp .L2 # goto compare x to 0

entry test

.L3:

addl $1, -8(%rbp) # y++

subl $1, -4(%rbp) # x--

.L2:

cmpl $0, -4(%rbp) # compare x to 0

jg .L3 # goto loop entry if positive

. . .

C to Assembly: while

. . .

int y = 0;

while (x > 0) {

y++;

x--;

}

. . .

gcc -S –m64 –O0 while.c

X86-64 Control Structures

Computer Organization I

11

CS@VT ©2005-2019 McQuain

C to Assembly: while

gcc -S –m64 –O0 while.c

Note that the compiler translated the C
while loop to a logically-equivalent

do-while loop.

. . .

movl $0, -8(%rbp) # y = 0

jmp .L2 # goto compare x to 0

entry test

.L3:

addl $1, -8(%rbp) # y++

subl $1, -4(%rbp) # x--

.L2:

cmpl $0, -4(%rbp) # compare x to 0

jg .L3 # goto loop entry if positive

. . .

. . .

int y = 0;

goto L2;

L3:

y++;

x--;

L2: if (x > 0) goto L3;

. . .

X86-64 Control Structures

Computer Organization I

12

CS@VT ©2005-2019 McQuain

f:

pushq %rbp

movq %rsp, %rbp

subq 20, %rsp

movl %edi, -20(%rbp)

movl $1, -4(%rbp)

movl $2, -8(%rbp)

jmp .L2

.L3:

movl -4(%rbp), %eax

imull -8(%rbp), %eax

movl %eax, -4(%rbp)

addl $1, -8(%rbp)

.L2:

movl -8(%rbp), %eax

cmpl -20(%rbp), %eax

jle .L3

movl -4(%rbp), %eax

leave

ret

. . .

Reverse Engineering: Assembly to C

Let's consider a short assembly function:

We're going to reconstruct an

equivalent function in C.

The first step will be to identify the

things that do not translate to C…

This is stack setup code;

the compiler creates this;

it is not represented in C.

This is cleanup and return

code; it corresponds to a
return statement in C.

X86-64 Control Structures

Computer Organization I

13

CS@VT ©2005-2019 McQuain

. . .

f:

...

movl %edi, -20(%rbp)

movl $1, -4(%rbp)

movl $2, -8(%rbp)

jmp .L2

.L3:

movl -4(%rbp), %eax

imull -8(%rbp), %eax

movl %eax, -4(%rbp)

addl $1, -8(%rbp)

.L2:

movl -8(%rbp), %eax

cmpl -20(%rbp), %eax

jle .L3

movl -4(%rbp), %eax

. . .

Reverse Engineering: Assembly to C

The next step will be to identify variables…

We're going to reconstruct an

equivalent function in C.

The next step will be to identify

variables…

X86-64 Control Structures

Computer Organization I

14

CS@VT ©2005-2019 McQuain

. . .

f:

. . .

movl $1, -4(%rbp)

movl $2, -8(%rbp)

. . .

cmpl -20(%rbp), %eax

. . .

Reverse Engineering: Assembly to C

Variables will be indicated by memory accesses.

Filtering out repeat accesses yields

these assembly statements:

There's an access to a variable on the stack at rbp - 4; this must be a local (auto)
variable. Let's call it Local1

There's another access to a variable on the stack at rbp - 8; this must also be a
local (auto) variable. Let's call it Local2.

A parameter is passed in %edi and stored in rbp – 20; let's call it Param1.

X86-64 Control Structures

Computer Organization I

15

CS@VT ©2005-2019 McQuain

Reverse Engineering: Assembly to C

Now we'll assume the variables are all C ints, and considering that the first

two accesses are initialization statements, so far we can say the function in

question looks like:

And another clue is the statement that stores the value of the variable we're
calling Local1 into the register eax (or rax) right before the function returns.

That indicates what's returned and the return type:

______ f(int Param1) {

int Local1 = 1;

int Local2 = 2;

. . .

}

int f(int Param1) {

int Local1 = 1;

int Local2 = 2;

. . .

return Local1;

}

X86-64 Control Structures

Computer Organization I

16

CS@VT ©2005-2019 McQuain

. . .

f:

. . .

jmp .L2

.L3:

. . .

.L2:

movl -8(%rbp), %eax

cmpl -20(%rbp), %eax

jle .L3

. . .

Reverse Engineering: Assembly to C

Now, there are two jump statements, a comparison statement, and two labels,

all of which indicate the presence of a loop…

The first jump is unconditional… that looks
like a C goto.

So, this skips the loop body the first time

through…

The comparison is using the parameter we're calling Param1 (first argument)

and we see that the register eax is holding the value of the variable we're calling

Local2 (second argument).

Moreover, the conditional jump statement that follows the comparison causes a
jump back to the label at the top of the loop, if Local2 <= Param1.

X86-64 Control Structures

Computer Organization I

17

CS@VT ©2005-2019 McQuain

. . .

f:

. . .

jmp .L2

.L3:

. . .

.L2:

movl -8(%rbp), %eax

cmpl -20(%rbp), %eax

jle .L3

. . .

Reverse Engineering: Assembly to C

What we've just discovered is that there is a while loop:

int f(int Param1) {

int Local1 = 1;

int Local2 = 2;

. . .

while (Local2 <= Param1){

. . .

}

. . .

return Local1;

}

The final step is to construct the body of the loop, and make sure we haven't

missed anything else…

X86-64 Control Structures

Computer Organization I

18

CS@VT ©2005-2019 McQuain

. . .

f:

. . .

jmp .L2

.L3:

movl -4(%rbp), %eax

imull -8(%rbp), %eax

movl %eax, -4(%rbp)

addl $1, -8(%rbp)

.L2:

movl -8(%rbp), %eax

cmpl -20(%rbp), %eax

jle .L3

. . .

Reverse Engineering: Assembly to C

Here's what's left, including the loop boundaries for clarity:

And that will do it…

eax = Local1

eax = Local1 * Local2

Local1 = eax = Local1 * Local2

Local2 = Local2 + 1

X86-64 Control Structures

Computer Organization I

19

CS@VT ©2005-2019 McQuain

Reverse Engineering: Assembly to C

Here's our function:

int f(int Param1) {

int Local1 = 1;

int Local2 = 2;

while (Local2 <= Param1) {

Local1 = Local1 * Local2;

Local2++;

}

return Local1;

}

So, what is it computing… really?

X86-64 Control Structures

Computer Organization I

20

CS@VT ©2005-2019 McQuain

f:

cmpl $1, %edi

jle .L4

movl $2, %edx

movl $1, %eax

.L3:

imull %edx, %eax

addl $1, %edx

cmpl %edx, %edi

jge .L3

rep ret

.L4:

movl $1, %eax

ret

. . .

Optimized Assembly

Let's consider the same function, just lightly optimized using –O1:

The is stack setup code

has been omitted. There

are only a few locals, and

one parameter, so we

don’t need the stack.

The stack clean up code

is also mostly gone. Only
the ret instruction

remains. More on this

later.

Registers are used

instead of the stack.

%edi holds Param1.

%eax is used as Local1.

%edx is used as Local2.

X86-64 Control Structures

Computer Organization I

21

CS@VT ©2005-2019 McQuain

f:

cmpl $1, %edi

jle .L4

movl $2, %edx

movl $1, %eax

.L3:

imull %edx, %eax

addl $1, %edx

cmpl %edx, %edi

jge .L3

rep ret

.L4:

movl $1, %eax

ret

. . .

Optimized Assembly

Reproducing the earlier slide, we have the exact same pieces in fewer steps:

And that will do it…

eax = Local1

edx = Local2

Local1 = eax = Local1 * Local2

Local2 = Local2 + 1

