
C Pointers and Arrays

Computer Organization I

1

CS@VT ©2005-2019 McQuain

Dynamic Allocation in C

The previous examples involved only targets that were declared as local variables.

For serious development, we must also be able to create variables dynamically, as the

program executes.

In C, this is accomplished via the Std Library function malloc() and friends:

malloc() allocates a block of uninitialized memory; returns the address

calloc() allocates a block of memory and clears it; returns the address

realloc() resizes a previously allocated block of memory; returns the address

int *A = malloc(1000 * sizeof(int));

char *B = malloc(5000);

uint64_t Size = 100;

double *C = malloc(Size * sizeof(double));

C Pointers and Arrays

Computer Organization I

2

CS@VT ©2005-2019 McQuain

The Heap

stack

stack

space

heap

dynamic

allocations

memory
Dynamic allocations take place in a region of memory called the "heap".

Successful calls to malloc() return a pointer to a block of memory that is now available

for your program to use.

The block of memory may be larger than your request (but you will never know that).

C Pointers and Arrays

Computer Organization I

3

CS@VT ©2005-2019 McQuain

Allocating Arrays Dynamically

You allocate an array by allocating a suitably-sized block of memory:

int N;

. . . // assume N is assigned a value

int *A = malloc(N * sizeof(int)); // allocate array

// dynamically

for (int pos = 0; pos < N; pos++) { // access using ptr name

A[pos] = pos * pos;

}

Any pointer name can be used with array syntax (bracket notation)… but you'd better

make sure that the pointee really is an array.

C Pointers and Arrays

Computer Organization I

4

CS@VT ©2005-2019 McQuain

Dynamic Allocation Failure

It is always possible that an allocation request will be denied; in that case, malloc()

and friends will return NULL.

A deadly sin is to not check the return value from malloc() to be sure it isn't NULL:

Without the check of A, the subsequent code will probably lead to a runtime error (unless

there was no need for the array).

int *pA = malloc(1000 * sizeof(int));

if (pA == NULL) {

fprintf(stderr, "Failed to allocate space for pA!\n");

exit(1);

}

C Pointers and Arrays

Computer Organization I

5

CS@VT ©2005-2019 McQuain

Deallocation in C

Deallocation is accomplished by using the Std Library function free():

One of the most glaring differences between Java and C is how memory deallocation is

accomplished.

In C, we have static allocations, local or automatic allocations, and dynamic allocations.

The first two are of no particular interest here.

Everything that your C program allocates dynamically must eventually be deallocated.

The responsibility is yours.

Failure to deallocate memory in a timely but safe manner is one of the most common

programming mistakes in many languages, including C.

free() does not reset the value of the pointer on which it is invoked!

int *pA = malloc(1000 * sizeof(int));

. . . // do stuff with the array

free(pA);

C Pointers and Arrays

Computer Organization I

6

CS@VT ©2005-2019 McQuain

C free()

It's important to understand just what free() does (and does not do).

First, free() can only be applied to a pointer storing the address of a target that was

allocated by calling malloc() and friends.

Second, free() can only be applied to a pointer whose a target that has not already been

deallocated.

Third, when free() is invoked on a pointer, the pointer is not automatically reset to

NULL.

Fourth, free() causes the deallocation of the target of the pointer, not the deallocation

of the pointer itself. You don't free a pointer, you free its target.

C Pointers and Arrays

Computer Organization I

7

CS@VT ©2005-2019 McQuain

Array Names are const Pointers

int N;

. . . // assume N is assigned a value

int *A = malloc(1000 * sizeof(int)); // allocate array

int B[1000]; // declare array

for (int pos = 0; pos < N; pos++) {

A[pos] = pos * pos; // access using ptr name

B[pos] = pos * pos; // access using array name

}

free(A); // OK; deallocates array A

A = NULL; // OK

free(B); // NO! cannot deallocate static memory

B = NULL; // NO! array name is const pointer

So, what's the difference between an array name (static allocation) and a pointer?

C Pointers and Arrays

Computer Organization I

8

CS@VT ©2005-2019 McQuain

Array Notation vs Pointers

int A[1000];

. . .

int x = A[10];

int *B = malloc(1000*sizeof(int));

. . .

int x = *(B + 10);

index address

0 1000

1 1004

1008

10 1040

B

B + 10

Really means:
B + 10 * sizeof(int)

C Pointers and Arrays

Computer Organization I

9

CS@VT ©2005-2019 McQuain

Arithmetic on Pointers

int A[1000]; // allocate array; static doesn’t matter

int *p = A; // p points to A[0]

p = p + 100; // where does p point now??

p = p – 50; // now?

p++; // now?

p--; // now?

So, what's the effect of:

The effect of adding a value to a pointer depends on the pointer type:

A[100]

A[50]

A[51]

A[50]

C Pointers and Arrays

Computer Organization I

10

CS@VT ©2005-2019 McQuain

Arithmetic on Pointers

The effect of adding a value to a pointer depends on the pointer type:

When an expression that has integer type is added to or subtracted from a pointer, the result

has the type of the pointer operand.

If the pointer operand points to an element of an array object, and the array is large enough,

the result points to an element offset from the original element such that the difference of the

subscripts of the resulting and original array elements equals the integer expression.

In other words, if the expression P points to the i-th element of an array object, the expressions

(P)+N (equivalently, N+(P)) and (P)-N (where N has the value n) point to, respectively, the

i+n-th and i−n-th elements of the array object, provided they exist.

Moreover, if the expression P points to the last element of an array object, the expression

(P)+1 points one past the last element of the array object, and if the expression Q points one

past the last element of an array object, the expression (Q)-1 points to the last element of the

array object.

If both the pointer operand and the result point to elements of the same array object, or one

past the last element of the array object, the evaluation shall not produce an overflow;

otherwise, the behavior is undefined. If the result points one past the last element of the array

object, it shall not be used as the operand of a unary * operator that is evaluated.

C Pointers and Arrays

Computer Organization I

11

CS@VT ©2005-2019 McQuain

Using Arithmetic on Pointers

uint64_t strlen(const char* Source) {

uint64_t Length = 0;

while (*Source != '\0') {

Length++;

Source++;

}

return Length;

}

Here's an implementation of a variation of the C library strlen() function; note the use

of pointer arithmetic:

43 'C'

6F 'o'

6D 'm'

70 'p'

4F 'O'

72 'r'

67 'g'

00 '\0'

Source

Length: 0, 1, 2, 3, ..., 7

C Pointers and Arrays

Computer Organization I

12

CS@VT ©2005-2019 McQuain

Using Arithmetic on Pointers

And here's a slightly more idiomatic version:

uint64_t strlen(const char* Source) {

uint64_t Length = 0;

while (*Source++ != '\0')

Length++;

return Length;

}

Precedence note: the dereference operator (*) is evaluated before the increment operator

(++)

So, we access the current target of Source first, then we move Source to the next

array element.

QTP: is *Source++ equivalent to (*Source)++?

… or to *(Source++)?

C Pointers and Arrays

Computer Organization I

13

CS@VT ©2005-2019 McQuain

Using Arithmetic on Pointers

char* strcpy(char* Dest, const char* Source) {

int i = 0;

while (true) {

Dest[i] = Source[i];

if (Dest[i] == '\0') break; // we're done

i++;

}

return Dest;

}

Here's an implementation of the C library strcpy() function:

C Pointers and Arrays

Computer Organization I

14

CS@VT ©2005-2019 McQuain

Using Arithmetic on Pointers

And here's a version that uses pointer arithmetic to achieve the same effect:

char* strcpy(char* Dest, const char* Source) {

while ((*Dest++ = *Source++) != '\0') ;

}

43 'C'

6F 'o'

6D 'm'

70 'p'

4F 'O'

72 'r'

67 'g'

00 '\0'

Dest Source

C Pointers and Arrays

Computer Organization I

15

CS@VT ©2005-2019 McQuain

Identity vs Equality Revisited

x equals y x and y, in some precise sense, have the same value

In C, this is equivalent to x == y.

x is identical to y x and y are actually the same object

In C, this is equivalent to &x == &y.

Side notes:

If x and y are pointers, then x equals y if and only if x and y have the same target.

In other words, two pointers are equal if and only if their targets are identical.

C Pointers and Arrays

Computer Organization I

16

CS@VT ©2005-2019 McQuain

Memory Leaks

A memory leak occurs when a process allocates memory dynamically and then fails to

deallocate that memory before losing access to it:

int *p = malloc(1000 * sizeof(int));

. . . // no calls to free() here

p = malloc(1500 * sizeof(int)); // leaked original array

. . . // or here

p = NULL; // leaked second array

Memory leaks are common in badly-written C/C++ code.

Taken to extremes, they can consume all available memory on a system.

Garbage-collected memory management automates the process of deallocation, but can

never be more efficient than well-written code that deallocates memory manually.

C Pointers and Arrays

Computer Organization I

17

CS@VT ©2005-2019 McQuain

Memory Leaks

One issue you'll encounter in testing is that the Linux implementation of malloc() will

zero memory when it is allocated to your process.

That hides errors rather than fixing them. For better testing, add the following include:

#include <malloc.h>

Then in main() add this call: mallopt(M_PERTURB, 205);

This will guarantee that memory that is allocated with malloc() or realloc() is

NOT automatically written with zeros.

We recommend ALWAYS doing this when you're testing code that uses malloc() or

realloc().

Or… use the tool Valgrind…

C Pointers and Arrays

Computer Organization I

18

CS@VT ©2005-2019 McQuain

The Key to Good Memory Management

The key to good memory management practice can be stated quite easily:

In designing your system, keep careful track of exactly who (i.e., module or

function) has ownership of each dynamically-allocated object.

Practicing this is not easy.

But, with careful attention to detail, and meticulous recording of design decisions

about ownership in comments, it is certainly possible to eliminate memory leaks

altogether.

C Pointers and Arrays

Computer Organization I

19

CS@VT ©2005-2019 McQuain

Example

#define MAX_LINELENGTH 1024 // maximum length guaranteed?

// reading a line of text from a file

char* line = calloc(MAX_LINELENGTH + 1, sizeof(char));

fgets(line, MAX_LINELENGTH + 1, fp);

// but the line is actually likely to be much shorter than

// that, so we can offer to "shrink" it

line = realloc(line, sizeof(char)*(strlen(line) + 1));

C Pointers and Arrays

Computer Organization I

20

CS@VT ©2005-2019 McQuain

Example

// copying a string; suppose we have line from last slide

// first, make an array of exactly the right size:

char* copy = calloc(strlen(line) + 1, sizeof(char));

// then use strncpy() to duplicate the characters:

strncpy(copy, line, strlen(line));

