
Pointers in C

Computer Organization I

1

CS@VT ©2005-2019 WD McQuain

Memory and Addresses

Memory is just a sequence of byte-sized storage devices.

The bytes are assigned numeric addresses, starting with zero, just like the indexing of the

cells of an array.

It is the job of the operating system (OS) to:

- manage the allocation of memory to processes

- keep track of what particular addresses each process is allowed to access, and how

- reserve portions of memory exclusively for use by the OS

- enforce protection of the memory space of each process, and of the OS itself

- do all this as efficiently as possible

Pointers in C

Computer Organization I

2

CS@VT ©2005-2019 WD McQuain

Pointer Concepts

pointer a variable whose value is a memory address

pointee a value in memory whose address is stored in a pointer; we say the pointee is

the target of the pointer

. . .

0x00001010 A: 42

0x0000100C

0x00001008 B: 0x00001010

0x00001004 C: 0x00001008

0x00001000

0x00000FFC D: 0x00000FF8

0x00000FF8 ??

. . .

memory

addresses contents

Pointers in C

Computer Organization I

3

CS@VT ©2005-2019 WD McQuain

Pointer Concepts

Since memory addresses are essentially just integer values, pointers are the same width as

integers.

A pointer has a type, which is related to the type of its target.

Pointer types are simple; there is no automatic initialization.

A pointer may or may not have a logically valid target.

Given a pointer that has a valid target, the target may be accessed by dereferencing the

pointer.

A pointee may be the target of more than one pointer at the same time.

Pointers may be assigned and compared for equality, using the usual operators.

Pointers may also be manipulated by incrementing and decrementing, although doing so

is only safe under precisely-defined circumstances.

By convention, pointers without targets should be set to 0 (or NULL).

Pointers in C

Computer Organization I

4

CS@VT ©2005-2019 WD McQuain

C Syntax: Declaring Pointers

Declarations:

int* p1 = NULL; // declaration of pointer-to-an-int

char *p2 = 0; // pointer-to-a-char

int **p3 = NULL; // pointer-to-a-pointer-to-an-int

One syntax gotcha:

int* q1 = NULL,

q2 = NULL; // q2 is an int, not a pointer!

int *q1 = NULL,

*q2 = NULL; // q1 and q2 are both pointers

Pointers in C

Computer Organization I

5

CS@VT ©2005-2019 WD McQuain

C Syntax: address-of Operator

int x = 42,

y = 99;

int* p1 = &x; // p1 stores address of variable x

int* p2 = &y; // p2 stores address of variable y

int** p3 = &p2; // p3 stores address of variable p2

&X returns the address of the object X; the address-of operator

. . .

x: 42

y: 99

p1: xx

p2: xx

p3: xx

. . .

Pointers in C

Computer Organization I

6

CS@VT ©2005-2019 WD McQuain

C Syntax: dereference Operator

*P names the target of the pointer P; the dereference operator

int x = 42, y = 99;

int* p1 = &x; // p1 stores address of variable x

int* p2 = &y; // p2 stores address of variable y

int** p3 = &p2; // p3 stores address of variable p2

int aa = *p1; // aa stores value of the target of p1, 42

*p1 = 10; // the target of p1, which is x, stores 10

int bb = *p3; // illegal: *p3 is a pointer-to-int but bb

// is just an int

int bb = **p3; // bb stores value of the target of the

// target of p3; p3 points to p2 and

// p2 points to y, so bb gets value 99

Pointers in C

Computer Organization I

7

CS@VT ©2005-2019 WD McQuain

Understanding C Syntax

int Z = 42;

int *X = &Z;

X // refers to X, type is int*

&X // refers to address of X, type is int**

*X // refers to target of X, type is int

*&X // refers to target of address of X, which is just… X

&*X // refers to address of target of X, which is just…

// the value of X

// (only makes sense syntactically if X is a pointer)

Pointers in C

Computer Organization I

8

CS@VT ©2005-2019 WD McQuain

C Example

int main() {

int x = 42, y = 99;

int* p1 = &x; // p1 stores address of variable x

int* p2 = &y; // p2 stores address of variable y

int** p3 = &p2; // p3 stores address of variable p2

int aa = *p1; // aa stores value of the target of p1, 42

*p1 = 10; // the target of p1, which is x, stores 10

int bb = **p3; // bb stores value of the target of the

// target of p3; p3 points to p1 and

// p1 points to x, so bb gets value 99

return 0;

}

Pointers in C

Computer Organization I

9

CS@VT ©2005-2019 WD McQuain

C View

int main() {

. . .

int* p1 = &x; // p1 is assigned the address of variable x

int* p2 = &y; // p2 is assigned the address of variable y

. . .

}

&x the address of x

x is an int

&x is an int*

&y the address of y

Pointers in C

Computer Organization I

10

CS@VT ©2005-2019 WD McQuain

C View

int main() {

. . .

int** p3 = &p2; // p3 is assigned the address of variable p2

. . .

}

&p2 the address of p2

p2 is an int*

&p2 is an int**

Pointers in C

Computer Organization I

11

CS@VT ©2005-2019 WD McQuain

C View

int main() {

. . .

int aa = *p1; // aa is assigned value of the target of p1;

// p1 points to x;

// x has the value 42

. . .

}

*p1 the target of p1

p1 points to x

x has the value 42

aa is assigned 42

Value of *p1

= value of target of p1

= value of x

= 42

Pointers in C

Computer Organization I

12

CS@VT ©2005-2019 WD McQuain

C View

int main() {

. . .

*p1 = 10; // the target of p1, which is x,

// is assigned the value 10

. . .

}

Pointers in C

Computer Organization I

13

CS@VT ©2005-2019 WD McQuain

C View

int main() {

. . .

int bb = **p3; // bb stores value of the target of the

// target of p3; p3 points to p1 and

// p1 points to x, so bb gets value 99

. . .

}

*p3 the target of p3

p3 points to p2

p2 points to y

y has the value 99

Value of **p3

= value of target of target of p3

= value of target of p2

= value of y

= 99

Pointers in C

Computer Organization I

14

CS@VT ©2005-2019 WD McQuain

Pointer Comparisons

Pointers may be compared using the usual relational operators.

p1 == p2 Do p1 and p2 have the

same target?

p1 < p2 Does p1 point to

something "below" p2?

*p1 == *p2 Do the targets of p1 and

p2 have the same value?

Pointers in C

Computer Organization I

15

CS@VT ©2005-2019 WD McQuain

Pointers as Parameters

#include <stdint.h>

int main() {

uint32_t X = 100;

uint32_t Y = 200;

Swap(&X, &Y);

return 0;

}

void Swap(uint32_t* A, uint32_t* B) {

uint32_t Temp = *A; // Temp = 100

*A = *B; // X = 200

*B = Temp; // Y = 100

}

The pass-by-pointer protocol provides a called function with the ability to modify the

value of the caller's variable.

Pointers in C

Computer Organization I

16

CS@VT ©2005-2019 WD McQuain

Evil: Dangling Pointers and Aliases

The most common source of errors with direct pointer use is to dereference a pointer that

does not have a valid target:

int *A;

*A = 42; // A never had a target

int *A = NULL;

if (A != NULL) // used correctly, NULL

*A = 42; // lets us check

int *A = malloc(sizeof(int)); // A has a target

int *B = A; // B shares it; alias

free(A); // neither has a target

*B = 42; // ERROR

Pointers in C

Computer Organization I

17

CS@VT ©2005-2019 WD McQuain

Evil: Dangling Pointers and Aliases

What about doing this:

int *A;

if (A != NULL) // used correctly, NULL

*A = 42; // lets us check

Or this:

void f(int *A) {

if (A != NULL)

*A = 42;

}

Pointers in C

Computer Organization I

18

CS@VT ©2005-2019 WD McQuain

Pointers and Raw Memory

Suppose that we have a region of memory initialized as shown below, and a pointer p

whose target is the first byte of the region:

. . .

00000001

00000010

00000011

00000100

00000101

00000110

00000111

. . .

uint8_t* p8

Then *p8 would evaluate to the single byte 00000001.

in
c
re

a
s
in

g
 a

d
d
re

s
s
e
s



Pointers in C

Computer Organization I

19

CS@VT ©2005-2019 WD McQuain

Pointers and Raw Memory

Now suppose that we have a region of memory initialized as shown below, and a pointer
p16 whose target is the first byte of the region:

. . .

00000001

00000010

00000011

00000100

00000101

00000110

00000111

. . .

uint16_t* p16

Then *p16 would evaluate to the two- byte value

000000001 00000010

in
c
re

a
s
in

g
 a

d
d
re

s
s
e
s



Pointers in C

Computer Organization I

20

CS@VT ©2005-2019 WD McQuain

Pointer Casts

Now suppose that we have a region of memory initialized as shown below, and a pointer
p whose target is the first byte of the region:

. . .

00000001

00000010

00000011

00000100

00000101

00000110

00000111

. . .

uint8_t* p

Then we can apply a typecast to the pointer p to access

two bytes:

((uint16_t) p)

The expression above evaluates to the two-byte value:

000000001 00000010

in
c
re

a
s
in

g
 a

d
d
re

s
s
e
s



Pointers in C

Computer Organization I

21

CS@VT ©2005-2019 WD McQuain

Understanding a Cast

. . .

00000001

00000010

00000011

00000100

00000101

00000110

00000111

. . .

uint8_t* p

((uint16_t) p)

in
c
re

a
s
in

g
 a

d
d
re

s
s
e
s



This creates a nameless temporary pointer that:

- has the type uint16_t*

- has the same value as p (so it points to the same

target as p)

This does not change anything about p.

Pointers in C

Computer Organization I

22

CS@VT ©2005-2019 WD McQuain

Pointers and Raw Memory Accesses

To generalize, size matters:

