
Identifier Attributes

Computer Organization I

1

CS@VT ©2005-2019 WD McQuain

The Three Attributes of an Identifier

Identifiers have three essential attributes:

- storage duration (variables only)

- scope

- linkage

What is an identifier?

- name of a variable

- name of a type

- name of a function

Identifier Attributes

Computer Organization I

2

CS@VT ©2005-2019 WD McQuain

Declarations and Definitions

A declaration specifies the interpretation and attributes of a set of identifiers.

A definition of an identifier is a declaration for that identifier that:

- for an object, causes storage to be reserved for that object;

- for a function, includes the function body;

- for an enumeration constant, is the (only) declaration of the identifier;

- for a typedef name, is the first (or only) declaration of the identifier.

Identifier Attributes

Computer Organization I

3

CS@VT ©2005-2019 WD McQuain

Storage Duration

storage duration

determines when, during execution of a program, memory is set aside for the

variable and when that memory is released

automatic duration

- storage is allocated when the surrounding block of code is executed

- storage is automatically deallocated when the block terminates

static duration

- storage is allocated when execution begins

- variable stays in the same storage location as long as the program is running

- variable can retain its value indefinitely (until program terminates)

Identifier Attributes

Computer Organization I

4

CS@VT ©2005-2019 WD McQuain

Automatic Storage Duration

...

void Sort(int list[], int Sz) {

int startIdx = 0;

...

}

default for variables that are

declared inside a block

created (memory allocated) on

each call

initialized on each call

deallocated (memory reclaimed)

when call ends

automatic duration

- storage is allocated when the surrounding block of code is executed

- storage is automatically deallocated when the block terminates

Identifier Attributes

Computer Organization I

5

CS@VT ©2005-2019 WD McQuain

Static Storage Duration

int numCallsToSort = 0;

...

void Sort(int list[], int Sz) {

static int numSwaps = 0;

...

}

default for variables declared

outside all blocks

initialized once, keeps its

value until program ends

variable is declared inside a

block, with keyword
static

initialized once, keeps its

value from one call to

the next

static duration

- storage is allocated when execution begins

- variable stays in the same storage location as long as the program is running

- variable can retain its value indefinitely (until program terminates)

Identifier Attributes

Computer Organization I

6

CS@VT ©2005-2019 WD McQuain

Scope

scope

(of an identifier) the range of program statements within which the name is

recognized as a valid name

block scope

- name is visible from its point of declaration to the end of the enclosing block

- place declaration of name within a block

file scope

- name is visible from its point of declaration to the end of the enclosing file

- place declaration of name outside of all blocks (typically before any blocks)

Identifier Attributes

Computer Organization I

7

CS@VT ©2005-2019 WD McQuain

Block Scope

void Sort(int list[], int Sz) {

static int numSwaps = 0;

int startIdx = 0;

for (...) {

int stopIdx = ...;

}

...

return;

}

name is declared inside a block

name can only be referred to from

declaration to end of block

block scope

- name is visible from its point of declaration to the end of the enclosing block

- place declaration of name within a block

Identifier Attributes

Computer Organization I

8

CS@VT ©2005-2019 WD McQuain

File Scope

int numCallsToSort = 0;

...

void Sort(int list[], int Sz) {

...

}

...

name declared outside all

blocks

name can be referred to from

any function within the

file

potentially dangerous

avoid unless necessary

pass parameters instead

file scope

- name is visible from its point of declaration to the end of the enclosing file

- place declaration of name outside of all blocks (typically before any blocks)

Identifier Attributes

Computer Organization I

9

CS@VT ©2005-2019 WD McQuain

Linkage

linkage

determines the extent to which the name can be shared by different parts of the

program

external linkage

- name may be shared by several (or all) files in the program

internal linkage

- name is restricted to a single file, but shared by all functions within that file

no linkage

- name is restricted to a single function

Identifier Attributes

Computer Organization I

10

CS@VT ©2005-2019 WD McQuain

External Linkage

int numCallsToSort = 0;

...

void Sort(int list[], int Sz) {

...

}

name is declared outside all

blocks

name can be referred to from

other files

potentially very dangerous

use only if necessary

external linkage

- name may be shared by several (or all) files in the program

Identifier Attributes

Computer Organization I

11

CS@VT ©2005-2019 WD McQuain

Internal Linkage

static int numCallsToSort = 0;

...

void Sort(int list[], int Sz) {

...

}

name is declared outside all

blocks, using reserved

word static

name cannot be referred to from

other files

potentially dangerous

use only if necessary

internal linkage

- name is restricted to a single file, but shared by all functions within that file

Identifier Attributes

Computer Organization I

12

CS@VT ©2005-2019 WD McQuain

No Linkage

...

void Sort(int list[], int Sz) {

static int numSwaps = 0;

int startIdx = 0;

...

}

name is declared inside a block

name can only be referred to

within the block where the

declaration is placed

no linkage

- name is restricted to a single function

Identifier Attributes

Computer Organization I

13

CS@VT ©2005-2019 WD McQuain

Determining the Attributes

When the defaults are not satisfactory, see:

auto

static

extern

register

The default storage duration, scope and linkage of a variable depend on the location of its

declaration:

inside a block

automatic storage duration, block scope, no linkage

outside any block

static storage duration, file scope, external linkage

Identifier Attributes

Computer Organization I

14

CS@VT ©2005-2019 WD McQuain

Global Symbols?

function names:

- functions not defined locally are assumed to be external; so compiler leaves

resolving them to the linker

- triggers implicit declaration warning, and frequently link-time errors when

actual function interface doesn't match implicit one

- global functions should be declared in header files

global symbol

- name has external linkage

- references to the name are handled by the linker

- compiler and linker have relevant rules… for function names… for variable names

variable names:

- variables not declared locally are treated as errors

- must use "extern" declaration for global variables defined elsewhere

Identifier Attributes

Computer Organization I

15

CS@VT ©2005-2019 WD McQuain

Function Names

void func4();

extern void func4();

– makes e an external reference

static void func1() { . . . }

– defines file-local symbol func1; not global

void func2() { . . . }

– defines (strong) global symbol func2

static void func3();

– defines no symbol; declares func3

all examples are

at file scope

Identifier Attributes

Computer Organization I

16

CS@VT ©2005-2019 WD McQuain

Variable Names

int z = 4;

– defines strong global symbol

static int x = 4;

static int y;

– defines file-local symbols x and y

int w;

– defines weak global symbol aka common symbol

extern int ext;

– ext is defined somewhere else all examples are

at file scope

Identifier Attributes

Computer Organization I

17

CS@VT ©2005-2019 WD McQuain

Use Case: Global Type Name

struct _Rational {

int64_t top;

int64_t bottom;

};

typedef struct _Rational Rational;

Data types are typically needed throughout an implementation, and so must be global.

The type declaration is usually placed in a suitable header file so it can be included as

needed.

Rational.h

Identifier Attributes

Computer Organization I

18

CS@VT ©2005-2019 WD McQuain

Use Case: Global Function Name

Rational Rational_Add(Rational left, Rational right);

Used for any function that needs to be called from other modules. Very common.

Place function declaration in suitable header file.

Rational.h

Identifier Attributes

Computer Organization I

19

CS@VT ©2005-2019 WD McQuain

Use Case: Global Variable Name

// no example given . . . almost always a bad idea

Unlike types and functions, variables are mutable.

Making a variable global allows modifications to it to be made from anywhere.

Identifier Attributes

Computer Organization I

20

CS@VT ©2005-2019 WD McQuain

struct _indexEntry {

uint32_t location;

int32_t key;

};

typedef struct _indexEntry indexEntry;

static indexEntry Index[maxEntries];

uint32_t findEntry(int32_t keyValue) {

. . .

}

Use Case: File-local Type Name

Here, we create an array to index a collection of records.

The index uses objects that only make sense locally, so the type is file-local.

Index.c

Identifier Attributes

Computer Organization I

21

CS@VT ©2005-2019 WD McQuain

Use Case: File-local Variable Name

struct _indexEntry {

uint32_t location;

int32_t key;

};

typedef struct _indexEntry indexEntry;

static indexEntry Index[maxEntries];

uint32_t findEntry(int32_t keyValue) {

. . .

}

The array that holds the index entries is file-local, so various search and mutator functions

can access it directly.

Index.c

The search function shown here would be declared in a header file, so it is global.

Identifier Attributes

Computer Organization I

22

CS@VT ©2005-2019 WD McQuain

Use Case: File-local Variable Name

. . .

static indexEntry Index[maxEntries];

. . .

But… why make the array file-local?

Index.c

Why not make it local to a function?

Answer: we need to populate the array with entries as we build the index, and the index

(the array) needs to be persistent.

If we made the array local to a function

- it could only be accessed from within that function

- it would cease to exist when that function returned

Identifier Attributes

Computer Organization I

23

CS@VT ©2005-2019 WD McQuain

Use Case: File-local Variable Name

. . .

static indexEntry Index[maxEntries];

. . .

Index.c

Why not make the array global?

Answer: we want to restrict modifications to the array.

If we made the array global, it could be changed from anywhere in the program.

Identifier Attributes

Computer Organization I

24

CS@VT ©2005-2019 WD McQuain

Use Case: File-local Function Name

static Rational Rational_Reduce(Rational original);

. . .

static Rational Rational_Reduce(Rational original) {

. . .

}

Used for any function that needs to be called only from the current module.

Place function declaration suitable .c file, and make the function static.

Rational.c

