
CS 2505 Computer Organization I C04: Parsing GIS Records

Version 2.00 This is a purely individual assignment! 1

C Programming Parsing Formatted C Strings

We will consider the problem of decomposing a given string, that is divided into logical parts (fields) which are separated

by known delimiters, into a collection of separate strings. In particular, consider the strings shown below, which are GIS

records taken from a GIS database file:

901051|Becker|Locale|NM|35|Eddy|015|322833N|1040812W|32.4759521|-104.1366141|||||959|3146|Carlsbad East|11/01/1992|

902674|Twin Boils Spring|Spring|NM|35|Eddy|015|323333N|1042326W|32.559118|-104.3906084|||||982|3222|Seven

Rivers|01/01/1993|04/19/2011

The line break in the second record is just a result of wrapping a line that's too long to fit the page width. Each record

consists of 20 fields, separated by pipe symbols ('|'). Some fields are empty. An empty field occurs if there are two

adjacent pipe symbols; there are many examples of that in both records. An empty field occurs at the end, if the last

character in the record is a pipe symbol; that happens with the first record.

Given the first record above, we want to break it up into a collection of 20 strings, some of which will be empty:

0 901051

1 Becker

2 Locale

3 NM

4 35

5 Eddy

6 015

7 322833N

8 1040812W

9 32.4759521

10 -104.1366141

11

12

13

14

15 959

16 3146

17 Carlsbad East

18 11/01/1992

19

Some fields could be interpreted as numbers, or dates, or coordinates, but we'll just think of each of them as a string of

characters. Some fields are always the same width, while other fields can vary in width. We won't try to make use of the

width when deciding how to break the string into separate fields.

We will assume that each record string will conform to the format shown above. That is, each will contain 19 pipe

symbols, separating 20 fields, where some fields may be empty. A few fields are, in fact, guaranteed to be nonempty, but

many fields may be empty or not. We will not make any assumptions about which fields may be empty, since doing so

doesn't make our task any simpler.

Now, C represents strings as char arrays with a terminating zero byte ('\0'). For each field, we will dynamically

allocate a char array of exactly the right length; so an empty string will be represented by an array of dimension 1, holding

a zero byte.

Since we will have multiple fields, and we must use char pointers when we allocate the arrays, we can use an array of

char* to organize the set of fields we parse out of a record string. It is tempting to just use an array of 20 char* for this,

but we should strive for a more flexible solution.

We will use a struct type that contains a dynamically allocated array of char*, and also stores the dimension of that

array:

CS 2505 Computer Organization I C04: Parsing GIS Records

Version 2.00 This is a purely individual assignment! 2

/** A StringBundle contains an array of nTokens pointers to properly-

 * terminated C strings (char arrays).

 *

 * A StringBundle is said to be proper if:

 * - Tokens == NULL and nTokens == 0

 * or

 * - nTokens > 0 and Tokens points to an array of nTokens char pointers,

 * - each char pointer points to a char array of minimum size to hold

 * its string, including the terminator (no wasted space)

 */

struct _StringBundle {

 char** Tokens; // pointer to dynamically-allocated array of char*

 uint32_t nTokens; // dimension of array pointed to by Tokens

};

typedef struct _StringBundle StringBundle;

The field Tokens is a char** because it points to the first element in an array of char* variables, so Tokens is a

pointer to a pointer to something of type char.

A StringBundle object that results from parsing the first GIS record string shown above would look like this:

You will implement the following function, which takes a pointer to a GIS record string, creates a corresponding

StringBundle object, and returns a pointer to that new StringBundle object:

/** Parses *str and creates a new StringBundle object containing the

 * separate fields of *str.

 *

 * Pre: str points to a GIS record string, properly terminated

 *

 * Returns: a pointer to a new proper StringBundle object

 */

StringBundle* createStringBundle(const char* const str);

Your solution may use any of the functions declared in the Standard Library, including the string manipulation functions.

In particular, the following functions may be useful, or even necessary:

malloc(), calloc(), realloc(), free()

strncpy(), memcpy()

strlen()

sscanf()

"901051"

"Becker"

"Locale"

"NM"

"35"

"Eddy"

"Carslbad East"

"11/01/1992"

""

•

•

•

•

•

•

•

•

•

…

Tokens

nTokens: 20

CS 2505 Computer Organization I C04: Parsing GIS Records

Version 2.00 This is a purely individual assignment! 3

Your solution must not create any memory leaks. Of course, when your function allocates memory dynamically, and that

memory is logically part of the StringBundle object being returned to the caller, deallocations of that are the

responsibility of the caller, by calling another function you'll be implementing:

/** Frees all the dynamic memory content of a StringBundle object.

 * The StringBundle object that sb points to is NOT deallocated here,

 * because we don't know whether that object was allocated dynamically.

 *

 * Pre: *sb is a proper StringBundle object

 *

 * Post: all the dynamic memory involved in *sb has been freed;

 * *sb is proper

 */

void clearStringBundle(StringBundle* sb);

The test code will call this function whenever it has a StringBundle object that is no longer needed. The test code will

also deallocate any memory that it allocates dynamically, so if Valgrind indicates there are any memory leaks, the fault will

lie in one of your functions.

You may, and are encouraged to, write additional functions. Any such functions must be declared as static, in the file

StringBundle.c, making them private to the C source file you will turn in. For what it's worth, my solution includes

two such helper functions. One is a variation on strcpy() and the other is a variation on strtok(). Each plays a vital

role in my design, and each was motivated by the fact that the two Standard Library functions were not quite what I needed.

These functions are described in more detail in the appendix Some Implementation Suggestions.

Supplied code

Download the supplied tar file and unpack it in a CentOS 7 directory. You will find the following files:

c04driver.c test driver

StringBundle.h* header file for required functions

StringBundle.c C shell file for required functions and private helpers

dataSelector.h* header file for test case generator

dataSelector.o* 64-bit Linux binary for test case generator

checkStringBundle.h* header file for grading function

checkStringBundle.o* 64-bit Linux binary for grading function

runValgrind.sh a bash script to simplify your use of Valgrind;

 see the comments for how to run it

GISdata.txt a file of GIS records; only used by dataSelector

Do not modify the files marked with an asterisk (*), because you will not be submitting those files. You may modify the

driver file during your testing, but we will use the original version when grading. Compile the code with the command:

gcc -o c04 -std=c11 -Wall -W -ggdb3 c04driver.c StringBundle.c dataSelector.o checkStringBundle.o

Invoke the driver as:

./c04 <name of GIS data file> <name for results file> [-repeat]

If invoked without -repeat, the program will choose a random set of GIS record strings from the specified GIS data file,

and use those strings for testing. You should specify the supplied GIS record file. The results file will show the test strings

that were used, information about anything that's wrong with your StringBundle objects, and score information.

If your solution creates bad pointers, or improperly-terminated C strings, it is possible the testing code will be crashed by a

segfault error. If that happens, gdb may help pin down the error. Valgrind is likely to be even more helpful with that

kind of error, because if there are access errors with memory allocations, Valgrind will show where those allocations were

requested, and where (in code) the access errors occurred. See the appendix Using Valgrind for more information.

CS 2505 Computer Organization I C04: Parsing GIS Records

Version 2.00 This is a purely individual assignment! 4

What to submit

For this assignment, you must place your source code in the file StringBundle.c, and submit that file to the Curator.

You will be allowed multiple submissions; the final one will be graded.

The Student Guide and other pertinent information, such as the link to the proper submit page, can be found at:

http://www.cs.vt.edu/curator/

Grading

This assignment will be graded automatically, using the same grading code we have supplied, but using the same test cases

for everyone. We will run multiple tests on your submission, using records with different mixtures of empty and nonempty

fields.

We will also use Valgrind to check:

 whether you have, in fact, used dynamic allocation

 whether you have deallocated all the arrays properly (checked via the Valgrind log)

 whether your solution performs any invalid reads or invalid writes, indicating that you have array bounds issues

 whether you have allocated excessively large arrays in order to avoid invalid reads and writes

 whether you have any uses of uninitialized values; this could relate to array bounds issues, or failure to properly

terminate your C-strings

You should use the supplied script to run your solution on Valgrind and check the resulting log file for indications of

errors. A bonus of up to 10% will be applied to your score if your solution exhibits no such bad behavior.

Pledge

Each of your program submissions must be pledged to conform to the Honor Code requirements for this course.

Specifically, you must include the following pledge statement in the submitted file:

// On my honor:

//

// - I have not discussed the C language code in my program with

// anyone other than my instructor or the teaching assistants

// assigned to this course.

//

// - I have not used C language code obtained from another student,

// the Internet, or any other unauthorized source, either modified

// or unmodified.

//

// - If any C language code or documentation used in my program

// was obtained from an authorized source, such as a text book or

// course notes, that has been clearly noted with a proper citation

// in the comments of my program.

//

// - I have not designed this program in such a way as to defeat or

// interfere with the normal operation of the Curator System.

//

// <Student Name>

// <Student's VT email PID>

We reserve the option of assigning a score of zero to any submission that is undocumented or does

not contain this statement.

http://www.cs.vt.edu/curator/

CS 2505 Computer Organization I C04: Parsing GIS Records

Version 2.00 This is a purely individual assignment! 5

Appendix: Quick Overview of struct Types

The struct mechanism in C has many similarities to the class mechanism in Java:

 Bundling of a collection of data values (fields) as a unit; data values are referenced by name.

 Can be passed as parameters or used as return values from functions.

 Can be assigned; values of corresponding data members are copied from source to target.

 Deep content (i.e., dynamically-allocated members) is not copied on assignment.

There are also important differences:

 All fields are public; there is no access control.

 Functions cannot be members of a struct variable.

 May be accessed by name or by pointer; Java objects can only be accessed by reference.

 Can be created by static declarations or by dynamic allocation (not used in this assignment).

Here's a common use for a struct type in C:

struct _Rational {

 int64_t top;

 int64_t bottom;

};

typedef struct _Rational Rational;

We could create a Rational object in either of these ways (statically or dynamically):

Rational R; Rational *pR = malloc(sizeof(Rational));

In both cases, the fields in the new Rational object are (logically) uninitialized. For now, we will only consider the first

case, in which the object was created by a static allocation (so it's stored on the stack).

When we create a struct variable statically, we can also initialize it (but only in the variable declaration):

Rational R = {37, 63};

We can implement functions to carry out operations on Rational objects (they just can't be member functions). For

example:

Rational Rational_Add(const Rational Left, const Rational Right) {

 Rational Sum; // create object to hold the result

 // initialize that object

 Sum.Top = Left.Top * Right.Bottom + Left.Bottom * Right.Top;

 Sum.Bottom = Left.Bottom * Right.Bottom;

 // return (a copy of) it to the caller

 return Sum;

}

Note how the fields of a Rational object are accessed here; we use the name of the object, followed by the field-selector

operator ('.'), followed by the name of the field: Sum.Top

What about accessing struct variables by pointer? Here's an alternate approach to implementing an addition function for

Rational objects:

CS 2505 Computer Organization I C04: Parsing GIS Records

Version 2.00 This is a purely individual assignment! 6

void Rational_Add(Rational* const pSum, const Rational Left, const Rational Right) {

 // initialize Sum

 pSum->Top = Left.Top * Right.Bottom + Left.Bottom * Right.Top;

 pSum->Bottom = Left.Bottom * Right.Bottom;

}

Here, pSum is assumed to point to an existing Rational object created by the caller. We can access members of *pSum in

two ways:

(*pSum).Top = Left.Top * Right.Bottom + Left.Bottom * Right.Top;

or

pSum->Top = Left.Top * Right.Bottom + Left.Bottom * Right.Top;

In the first approach, *pSum is actually a name for the object that pSum points to, but we have to put parentheses around that

due to precedence rules in C.

In the second approach, the arrow operator ('->') takes a pointer to a struct variable as its left parameter and the name of

a field in that struct variable as its right parameter.

Most C programmers prefer the second syntax.

CS 2505 Computer Organization I C04: Parsing GIS Records

Version 2.00 This is a purely individual assignment! 7

Appendix: Some Implementation Suggestions

Incremental development:

Begin by writing your own, simple testing code. All that's needed for this is to create a separate C source file (say,

myTestCode.c), write a simple main() function there, and include directives as needed. Then:

 Copy a line from the GIS data file and hardwire it as a string literal into your main() function.

 Don't worry about writing your createStringBundle() function at first. Instead, write a simpler function in

the same file as main() and pass it the string literal.

 A simple beginning point is to have your function just try to extract the first field from the GIS record, put that field

into a dynamically-allocated char array, and print that field to standard output. Tinker with that until it's correct.

 At this point, gdb and Valgrind are your friends. Use them wisely.

 Once that works, try to find the next couple of fields, put them into char arrays, and print them.

Once this is working, put your parsing function(s) into StringBundle.c, using the specified interface for the primary

function createStringBundle(). Compile with the supplied testing code, and see what results you get.

When that is working, try to get all the fields. You'll have to deal with empty fields at this point, and deal with stopping after

the last field, whether or not that field is empty. From this point on, gdb and valgrind are surely your best friends.

Now, some hints about parsing…

As far as the Standard Library goes, the function strtok() is the most obvious approach. However, strtok() will not

handle the empty fields correctly. If strtok() sees a sequence of delimiting characters (like two or more pipe symbols in a

row), it treats them all as one delimiter and goes on to the next nonempty field. That won't do. Worse, strtok() will attempt to

modify the contents of the C-string you are passing to it, and in this case that would violate const restrictions in the function

interface.

On the other hand, processing the string character by character is tedious; that's why I wrote a customized variation of

strtok() for my solution. You are, of course, free to process character by character if you like.

Another candidate from the Standard Library is sscanf(), which is like fscanf() except that it reads from a C string

instead of a file. If you use sscanf(), you just solve two problems:

 how do you specify the delimiters?

 how do you tell sscanf() where to start reading, when you call it multiple times on the same string?

The second issue arises from basic differences between file-oriented I/O using streams and sscanf(). Using a file stream,

fscanf() keeps track of where it stops reading in an input file, so it can resume at the correct place in the file when called

multiple times. Operating on a character array, sscanf() has no automatic way to do the same thing.

For both issues, consult the course notes on I/O and parsing with C strings. Those show how to using scansets in

sscanf(), and how to "restart" sscanf() when it's called multiple times on the same string.

The GIS records can vary considerably in content; some have more empty fields than others; some have an empty last field,

and some do not. By default, the supplied test driver chooses a random set of records for testing. See the comments in

c04driver.c for more details. You should run the test driver many times, in hopes of triggering every possible scenario.

You might also edit c04river.c to increase the number of test cases used.

CS 2505 Computer Organization I C04: Parsing GIS Records

Version 2.00 This is a purely individual assignment! 8

Helper functions:

Helper functions improve development because they promote unit testing of smaller pieces of your design, they promote

readability by shifting details of parts of the computation to different contexts, and they promote reusability. Good C

programmers give careful thought about organizing their code to make use of helper functions. Actually, this has nothing to

do with the programming language you are using.

The function strtok() is likely to be less useful than you might expect, but I did write a customized variation of it as a

helper function in my solution:

/** Returns string containing copy of next field of a GIS record.

 *

 * Pre:

 * When beginning to parse a GIS record string, pChar points to the

 * first character in a GIS record string.

 * When parsing a GIS record string for subsequent fields, pChar is

 * set to NULL.

 *

 * Returns:

 * Pointer to a dynamically-allocated C-string holding the contents

 * of the next field; this may be an empty string, but will never

 * be NULL.

 *

 * How it works:

 *

 * If pChar is NULL, the function begins parsing at the character after

 * the end of the previous field (which was presumably read during an

 * earlier call to nextField() on the same GIS record string).

 *

 * If pChar is not NULL, the function begins parsing at the first

 * character in the GIS record string.

 *

 * If pChar points to a delimiter ('|'), an empty string is returned.

 *

 * Otherwise, a dynamically-allocated char array is created to hold the

 * next field, using the assumption that no GIS record field will

 * contain more than 200 characters.

 *

 * Next, the function uses sscanf() to read characters until a delimiter

 * is found, or the end of the GIS record string is reached.

 *

 * Finally, realloc() is used to shrink the array holding the field to

 * the minimum suitable size.

 *

 * If pChar is NULL, the function begins parsing at the poi

 *

 * Hints:

 * Use sscanf() with a suitable scanset to read the next field. See

 * the notes on String I/O for examples.

 * The function keeps track of the position in the GIS record string

 * by making use of a static local variable.

 */

static char* nextField(const char* const pChar);

You are not required to implement the function described here, but writing it will give you a better understanding of how a

proficient C programmer might approach this assignment. The function might also be very useful in future assignments.

CS 2505 Computer Organization I C04: Parsing GIS Records

Version 2.00 This is a purely individual assignment! 9

I also wrote a function to make a dynamically-allocated copy of a given C-string:

/** Makes a dynamically-allocated copy of a given C-string. The new

 * string is of minimum length to hold the contents of the original

 * string.

 *

 * Pre:

 * str points to a proper C-string, or is NULL

 *

 * Returns:

 * pointer to a dynamically-allocated C-string holding the

 * characters in *str; returns an empty string if str == NULL.

 */

static char* copyOf(const char* const str);

What the function does is simple, but useful in many programs that manipulate C-strings; that's why I made this a separate

function. The decision to have the function return an empty string instead of NULL when str is NULL was based on how I

wanted to use the function in my larger program.

CS 2505 Computer Organization I C04: Parsing GIS Records

Version 2.00 This is a purely individual assignment! 10

Appendix: Using Valgrind

Valgrind is a tool for detecting certain memory-related errors, including out of bounds accessed to dynamically-allocated

arrays and memory leaks (failure to deallocate memory that was allocated dynamically). A short introduction to Valgrind is

posted on the Resources page, and an extensive manual is available at the Valgrind project site (www.valgrind.org).

For best results, you should compile your C program with a debugging switch (-g or –ggdb3); this allows Valgrind to

provide more precise information about the sources of errors it detects. I ran my solution for this assignment on Valgrind:

#1071 wmcquain: soln> valgrind --leak-check=full --show-leak-kinds=all --log-file=vlog.txt --track-

origins=yes -v ./c04driver GISdata.txt results.txt

And, I got good news... there were no detected memory-related issues with my code:

==5181== Memcheck, a memory error detector

==5181== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==5181== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info

==5181== Command: ./c04driver GISdata.txt results.txt

==5181== Parent PID: 3128

--5181--

--5181-- Valgrind options:

--5181-- --leak-check=full

--5181-- --show-leak-kinds=all

--5181-- --log-file=vlog.txt

--5181-- --track-origins=yes

--5181-- -v==5181==

. . .

==5181== HEAP SUMMARY:

==5181== in use at exit: 0 bytes in 0 blocks

==5181== total heap usage: 2,075 allocs, 2,075 frees, 225,675 bytes allocated

==5181==

==5181== All heap blocks were freed -- no leaks are possible

==5181==

==5181== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

==5181== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

That's the sort of results you want to see when you try your solution with Valgrind.

On the other hand, here’s (part of) what I got from an incomplete solution:

. . .

==3279== Invalid read of size 1

==3279== at 0x4015CF: nextField (StringBundle.c:89)

==3279== by 0x401406: createStringBundle (StringBundle.c:32)

==3279== by 0x400C4A: main (c04driver.c:57)

==3279== Address 0x5255216 is 0 bytes after a block of size 134 alloc'd

==3279== at 0x4C2B9B5: calloc (vg_replace_malloc.c:711)

==3279== by 0x401565: copyOf (StringBundle.c:74)

==3279== by 0x4013BA: createStringBundle (StringBundle.c:18)

==3279== by 0x400C4A: main (c04driver.c:57)

==3279==

. . .

==3279== Invalid read of size 1

==3279== at 0x401128: nextField (checkStringBundle.c:116)

==3279== by 0x400FB7: refCreateStringBundle (checkStringBundle.c:68)

==3279== by 0x400DA5: checkStringBundle (checkStringBundle.c:13)

==3279== by 0x400CD7: main (c04driver.c:65)

==3279== Address 0x5256176 is 0 bytes after a block of size 134 alloc'd

==3279== at 0x4C2B9B5: calloc (vg_replace_malloc.c:711)

==3279== by 0x4010BE: copyOf (checkStringBundle.c:101)

==3279== by 0x400F6B: refCreateStringBundle (checkStringBundle.c:54)

==3279== by 0x400DA5: checkStringBundle (checkStringBundle.c:13)

==3279== by 0x400CD7: main (c04driver.c:65)

==3279==

. .

==3279== HEAP SUMMARY:

==3279== in use at exit: 219,473 bytes in 1,949 blocks

==3279== total heap usage: 2,077 allocs, 128 frees, 225,461 bytes allocated

==3279==

http://www.valgrind.org/

CS 2505 Computer Organization I C04: Parsing GIS Records

Version 2.00 This is a purely individual assignment! 11

==3279== Searching for pointers to 1,949 not-freed blocks

==3279== Checked 358,496 bytes

==3279==

==3279== 3 bytes in 3 blocks are indirectly lost in loss record 1 of 12

==3279== at 0x4C2B9B5: calloc (vg_replace_malloc.c:711)

==3279== by 0x40153E: copyOf (StringBundle.c:70)

==3279== by 0x4013F5: createStringBundle (StringBundle.c:27)

==3279== by 0x400C4A: main (c04driver.c:57)

==3279==

==3279== 20 bytes in 20 blocks are definitely lost in loss record 2 of 12

==3279== at 0x4C2B9B5: calloc (vg_replace_malloc.c:711)

==3279== by 0x4015E4: nextField (StringBundle.c:90)

==3279== by 0x401406: createStringBundle (StringBundle.c:32)

==3279== by 0x400C4A: main (c04driver.c:57)

==3279==

. . .

==3279== 570 bytes in 72 blocks are definitely lost in loss record 7 of 12

==3279== at 0x4C2B9B5: calloc (vg_replace_malloc.c:711)

==3279== by 0x40163A: nextField (StringBundle.c:94)

==3279== by 0x401406: createStringBundle (StringBundle.c:32)

==3279== by 0x400C4A: main (c04driver.c:57)

==3279==

. . .

==3279== 800 bytes in 5 blocks are indirectly lost in loss record 10 of 12

==3279== at 0x4C2BBB8: realloc (vg_replace_malloc.c:785)

==3279== by 0x401440: createStringBundle (StringBundle.c:39)

==3279== by 0x400C4A: main (c04driver.c:57)

==3279==

==3279== 1,508 (80 direct, 1,428 indirect) bytes in 5 blocks are definitely lost in loss record 11 of

12

==3279== at 0x4C2B9B5: calloc (vg_replace_malloc.c:711)

==3279== by 0x401380: createStringBundle (StringBundle.c:11)

==3279== by 0x400C4A: main (c04driver.c:57)

==3279==

==3279== 216,635 bytes in 1,640 blocks are still reachable in loss record 12 of 12

==3279== at 0x4C2B9B5: calloc (vg_replace_malloc.c:711)

==3279== by 0x4012EB: copyString (dataSelector.c:47)

==3279== by 0x401259: loadRecords (dataSelector.c:37)

==3279== by 0x400C16: main (c04driver.c:49)

==3279==

==3279== LEAK SUMMARY:

==3279== definitely lost: 1,410 bytes in 204 blocks

==3279== indirectly lost: 1,428 bytes in 105 blocks

==3279== possibly lost: 0 bytes in 0 blocks

==3279== still reachable: 216,635 bytes in 1,640 blocks

==3279== suppressed: 0 bytes in 0 blocks

==3279==

==3279== ERROR SUMMARY: 16 errors from 11 contexts (suppressed: 0 from 0)

. . .

As you see, Valgrind can also detect out-of-bounds accesses to arrays. In addition, Valgrind can detect uses of uninitialized

values; a Valgrind analysis of your solution should not show any of those either. So, try it out if you are having problems.

Change Log

Version Posted Pg Change

2.00 Aug XX Base document.

