
C Linked List

 Computer Organization I

1

CS@VT ©2005-2015 McQuain

Linked Lists
A linked list is a data structure that uses a "chain" of node objects, connected by pointers,
to organize a collection of user data values.

Here's a fairly typical conceptual view of a doubly-linked list:

Head node

Tail node

41

32

17

19

12

33

5

23

8

27

C Linked List

 Computer Organization I

2

CS@VT ©2005-2015 McQuain

Structural Considerations

Front Guard

Rear Guard
19

12

The use of "guard" nodes at the front and rear of a list eliminate any "special cases" when
implementing insertion/deletion operations.

This way, every "data" node will lie between two nodes.

The common alternative is to simply have pointers to the first and last data nodes, probably
stored in a list object. That leads to special cases when operating at the front or rear of the
list.

C Linked List

 Computer Organization I

3

CS@VT ©2005-2015 McQuain

Minimal Linked List Interface

A linked list implementation will typically provide at least:

 - initialization function to set up basic structure for an empty list

 - insert functions to add new element to the list; at front, at rear, at user-selected
position, ordered insertion

 - remove function to remove element from the list

 - find function to determine whether a given element occurs in the list

 - clear function to restore the list to an empty state

In C we would organize this as a pair of struct types (list and node) and a collection of
associated functions.

C Linked List

 Computer Organization I

4

CS@VT ©2005-2015 McQuain

Generic Node and List

#ifndef DLIST_H
#define DLIST_H

// List node:
struct _DNode {

 struct _DNode *prev; // points toward front of list
 struct _DNode *next; // points toward tail of list
};

// List object:
struct _DList {

 struct _DNode head; // front guard node for list
 struct _DNode tail; // rear guard node for list
};

typedef struct _DNode DNode;
typedef struct _DList DList;

#endif

C Linked List

 Computer Organization I

5

CS@VT ©2005-2015 McQuain

DList Initialization
An empty DList will be constructed as shown below:

DList object

DNode head DNode tail

Dnode* prev �

Dnode* next � Dnode* next

Dnode* prev

This eliminates special cases, because every data node will always be between two other
nodes.

We could also make head.prev point to tail and tail.next point to head, which
would eliminate NULL pointers and allow the list to be used in a circular fashion.

C Linked List

 Computer Organization I

6

CS@VT ©2005-2015 McQuain

Wrapping the Node in the Payload
We may use a single DList of DNode objects with any user data type, without sacrificing
type-checking.

We merely have to create a "duct tape" object to attach a data object to a node:

#ifndef INTEGERDT_H
#define INTEGERDT_H

#include "DList.h"

struct _IntegerDT { // "duct tape" attaches data object to DNode
 int payload;
 DNode node;
};

typedef struct _IntegerDT IntegerDT;

void IntegerDT_Init(IntegerDT* const pLE, const int* const I);

#endif

C Linked List

 Computer Organization I

7

CS@VT ©2005-2015 McQuain

Example of "duct-taped" List Structure

7

DList

42

25

head

tail

IntegerDT

IntegerDT

IntegerDT

The DList only "knows about" two DNode objects.

Each DNode object only "knows about" one or two other DNode objects.

The DList and Dnode objects "know" nothing of IntegerDT objects.

C Linked List

 Computer Organization I

8

CS@VT ©2005-2015 McQuain

Inserting a DNode

a DNode

next
prev

next
prev

We want to insert the node on the bottom between the other two nodes:

a DNode

next
prev

. . .

elem->prev = before->prev; // 1

elem->next = before; // 2

before->prev->next = elem; // 3

before->prev = elem; // 4

before

elem

1
2

3

4

C Linked List

 Computer Organization I

9

CS@VT ©2005-2015 McQuain

Inserting a DNode

The DList only "knows about" two DNode objects.

/* Inserts elem as the predecessor of before, which may be

 either an interior element or a tail.

*/

void DList_Insert (DNode* const before, DNode* const elem)
{

 assert (is_interior (before) || is_tail (before));

 assert (elem != NULL);

 elem->prev = before->prev;

 elem->next = before;

 before->prev->next = elem;

 before->prev = elem;

}

C Linked List

 Computer Organization I

10

CS@VT ©2005-2015 McQuain

Searching

Clearly, we need to be able to search a list for a data value that matches some
search criterion.

7

DList

42

25

head

tail

IntegerDT

IntegerDT

IntegerDT

But we must follow the list pointers, which tie the DNode objects together…

… so how are we going to access the user data objects?

C Linked List

 Computer Organization I

11

CS@VT ©2005-2015 McQuain

Accessing the "duct tape"

We want a pointer q that points to the IntegerDT object that contains the
Dnode that p points to.

Then it appears we can set the value for q by subtracting 4 from p…
… but that logic depends on the specific memory layout shown above.

payload

IntegerDT

prev
next

payload
prev
next

memory

increasing addresses

IntegerD
T

p

D
N

ode
p

q

Suppose the IntegerDT object is laid out in memory as shown:

C Linked List

 Computer Organization I

12

CS@VT ©2005-2015 McQuain

offsetof() to the Rescue!

offsetof(type, member-designator)

expands to an integer constant expression that has type size_t, the value
of which is the offset in bytes, to the structure member (designated by
member-designator), from the beginning of its structure (designated by
type).

The Standard Library includes a relevant C macro:

member1
member2
member3
member4

. . .

offset of
member3 struct F {

 member1;
 member2;
 member3;
 member4;
};

offsetof(F, member3)

C Linked List

 Computer Organization I

13

CS@VT ©2005-2015 McQuain

So…

Let's say that we have a pointer P to a DNode, which is embedded within one of
the IntegerDT objects seen earlier, and is also part of a DList.

7 IntegerDT P
node

Then, the address of the IntegerDT object would (almost) be given by:

P – offsetof(IntegerDT, node)

We just need to throw in a couple of typecasts:

 (IntegerDT*) ((uint8_t*)(P) – offsetof(IntegerDT, node))

C Linked List

 Computer Organization I

14

CS@VT ©2005-2015 McQuain

DList_Entry()

/* Converts pointer to a DNode NODE into a pointer to the
 structure that DNode is embedded inside.

 Supply the name of the outer structure STRUCT and the
 member name MEMBER of the DNode.
*/

#define DList_Entry(NODE, STRUCT, MEMBER) \
 ((STRUCT *) ((uint8_t *) (NODE) – \
 offsetof (STRUCT, MEMBER)))

This is just begging to be turned into a C preprocessor macro:

C Linked List

 Computer Organization I

15

CS@VT ©2005-2015 McQuain

Aside: Macro Translation

#define DList_Entry(NODE, STRUCT, MEMBER) \
 ((STRUCT *) ((uint8_t *) (NODE) – \
 offsetof (STRUCT, MEMBER)))

When the preprocessor sees code whose pattern matches the macro "interface", it
replaces that code with code generated from the macro "body":

. . .
IntegerDT *p = DList_Entry(e, IntegerDT, node);
. . .

. . .
IntegerDT *p = ((IntegerDT*)
 ((uint8_t*) (e – offsetof(IntegerDT, node)));
. . .

C Linked List

 Computer Organization I

16

CS@VT ©2005-2015 McQuain

Traversing the DList

void traverseList(DList* pL) {

 DNode* e = DList_Head(pL);

 while ((e = DList_Next(e)) != DList_End(pL)) {

 // Get pointer to the "duct-tape" object from
 // the pointer to the DList element:
 IntegerDT *p = DList_Entry(e, IntegerDT, node);

 // Get value of payload within "duct-tape" object:
 int userData = p->payload;

 // do stuff with current user data element
 }
}

C Linked List

 Computer Organization I

17

CS@VT ©2005-2015 McQuain

More DList Functions

// Set up an empty list:
void DList_Init(DList* pList);

// Insert node elem in front of node before:
void DList_Insert(DNode* pBefore, DNode* pElem);

// Remove node elem:
DNode* DList_Remove(DNode* pElem);

// Is list empty?
bool DList_Empty(DList* pList);

// Restore list to empty state:
void Dlist_Clear(Dlist* pList);
. . .

Here are some ideas for DList interface functions:

C Linked List

 Computer Organization I

18

CS@VT ©2005-2015 McQuain

More DList Functions

. . .
// Get pointer to first/last data node in list:
DNode* DList_Begin(DList* pList);
DNode* DList_End(DList* pList);

// Get pointer to successor/predecessor of node:
DNode* DList_Next(DNode* pElem);
DNode* DList_Prev(DNode* pElem);

// Get pointer to head/tail of list:
DNode* DList_Head(DList* pList);
DNode* DList_Tail(DList* pList);
. . .

C Linked List

 Computer Organization I

19

CS@VT ©2005-2015 McQuain

More DList Functions

. . .
// Insert elem at front/rear of list:
void DList_PushFront(DList* pList, DNode* pElem);
void DList_PushBack(DList* pList, DNode* pElem);

// Remove elem from front/rear of list:
DNode* DList_PopFront(DList* pList);
DNode* DList_PopBack(DList* pList);

