B Design: a mod-8 Counter Counters 1

A mod-8 counter stores a integer value, and increments that value (say) on each clock
tick, and wraps around to 0 if the previous stored value was 7.

So, the stored value follows a cycle:

000 001 010 011 100 101 110 111

CS@VT Computer Organization | ©2005-2012 McQuain



I Design: State Machine Counters 2

We need eight different states for our counter, one for each value from 0 to 7.

We can describe the operation by drawing a state machine. The nodes represent states
and the edges represent transitions and are labeled with the input (clock in this case) that
causes the transition to occur.

1 1 1
000 001 010 011
1 1
1 1 1
111 110 101 100

CS@VT Computer Organization | ©2005-2012 McQuain



I Design: State Table Counters 3

A state table summarizes the state machine and is useful in deriving equations later:

Current State | nput Next State

0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

P OPFRPORFRLROPFrO
P RPRRPRRPRRERPRERBR
OFRPFRPEFPEFPOOO
OFrRrRPFPOOPFFO
OFrRPROFRPOPFOLPR

CS@VT Computer Organization | ©2005-2012 McQuain



W Design: Deriving Equations Counters 4

We will derive an equation for each of the next state functions:

Current State | nput Next State

P RPPFPPFPOOOO
P RPOORFRPEF OO
P OPFRPORFRLROPFrO
P RPRRPRRPRRERPRERBR
OFRPFRPEFPPFPOOO
OFrRrPFPOOPFFO
OFrRPOFRPOPFOLPR

NO=C2-C1-CO+C2-C1-CO+C2-C1-CO+C2-C1-CO=C0
N1=C2-C1-CO+C2-C1-CO+C2-C1-CO+C2-C1-CO=C1-CO+Cl1-CO

N2=C2-C1-CO+C2-C1-CO+C2-C1-CO+C2-C1-CO
—C2-C1-CO+C2-C1+C2-CO

CS@VT Computer Organization | ©2005-2012 McQuain



B Design: Mapping to D Flip-flops Counters 5

Since each state 1s represented by a 3-bit integer, we can represent the states by using a
collection of three flip-flops (more-or-less a mini-register).

We will implement the circuit using D flip-flops, which make for a simple translation
from the state table because a D flip-flop simply accepts its input value.

So, we just need to feed each of the flip-flops the value of the appropriate next-state
function equation derived earlier...

CS@VT Computer Organization | ©2005-2012 McQuain



™ D Flip-flop Counters 6

The D flip-flop takes one data input and updates its state Q, on a clock tick, according to

the table:
D Q ~Q — D Ql—
0 0 1
1 1 1 DeK
~Q I—

In the following Logisim diagrams, the D flip-flops update state on the falling edge (when
the clock goes from high to low).

CS@VT Computer Organization | ©2005-2012 McQuain



™ JK Flip-flop Counters 7

The JK flip-flop takes two data inputs and updates its state Q, on a clock tick, according

to the table:
J K Q -Q —J Ql—
0 0 no change
0 1 0o 1 D CK
1 0 1 0
1 1 opposite —K ~Q —

In the following Logisim diagrams, the JK flip-flops update state on the falling edge
(when the clock goes from high to low).

CS@VT Computer Organization | ©2005-2012 McQuain



B Implementation Counters 8

Clock[] %
Enable@-—_//
i==]p" c2
_ _ —M b 2ol
N2=C2-C1-CO+C2-C1+C2-CO .__DUD B oS
> L=l
N1=C1-C0+C1-C0 | DD"_,:D 0P
: Co
— — o}
NO=CO0 [>o o ® @
C2 C1 CO

Cs@VT Computer Organization | ©2005-2012 McQuain



B Design: Mapping to JK Flip-flops Counters 9

We could also implement the circuit using JK flip-flops.

J K Q -0

0 0 no change
0 1 0 1

1 0 1 0

1 1 opposite

This will require a little more effort, since the inputs to the JK flip-flops cannot merely be
set to equal the next state functions.

CS@VT Computer Organization | ©2005-2012 McQuain



I Design: Deriving JK Inputs Counters 10

We must examine each current/next state pair and determine how/if the relevant flip-flop
needs to change state:

Flip-flop | nputs
Current State Next State J2 K2 Jl K1 JO KO

PRPRPRPRPOOOO
PR OORRFRPR OO
P OFRORORO
ORRPRRLPRRLROOO
OFRRFPOORRFRO
OFROFROROER
P OOORrROOO
P OOORFRrROOO
POFRORORO
POFRORORO
PRPRRPRRPRRRRER
PRPRRPRRPRRRRER

For this simple circuit, we either want the JK flip-flop to hold state (both inputs 0) or to
toggle state (both inputs 1).

CS@VT Computer Organization | ©2005-2012 McQuain



W Design: Deriving JK Input Equations Counters 11

We can derive equations in the usual manner from the previous table:

Flip-flop Inputs
Current State J2 K2 J1 Kl JO KO

2 Cl @
0O 0 O 0 0 0 0 1 1
0o o0 1 0 0 1 1 1 1
0 1 0 0 0 0 0 1 1
o 1 1 1 1 1 1 1 1
1 0 O 0 0 0 0 1 1
1 0 1 0 0 1 1 1 1
1 1 0 0 0 0 0 1 1
JO=K0=1 1 1 1 1 1 1 1 1 1

J1=K1=C2-C1-CO+C2-C1-CO+C2-C1-CO+C2-C1-CO
— C0
J2=K2=C2-C1-C0+C2-C1-CO=C1-CO

CS@VT Computer Organization | ©2005-2012 McQuain



™ Implementation Counters 12

J2=K2=C1-CO

JO=K0=
Clock|J =
R : ©0®
Enable|® C2 C1 CO

CS@VT Computer Organization | ©2005-2012 McQuain



! A mod-16 Counter Counters 13

We can use JK flip-flops to implement a 4-bit counter:

D3 Dz D1 DO

1 i ?T
Y @° ' @° ' @° 1 a
Kenl Keni Ken -
L @Enable
l l Clock
> i

Note that the J and K inputs are all set to the fixed value 1, so the flip-flops "toggle".

As the clock signal runs, the circuit will cycle its outputs through the values
0000, 0001, 0010, ..., 1111

and then repeat the pattern.
So, 1t counts clock ticks, modulo 16.

CS@VT Computer Organization | ©2005-2012 McQuain



I mod-16 Counter: first tick Counters 14

Suppose the counter is in the initial state shown below (output is 0000).

D2 D1 DO

$???
-JOQJ

Lm _J{DQ_-EN 1 O I_w ".JmQ"

1Kenn 1kenn 1Kieno 1kend

®

1 !‘ & 4 @Enable
T k\ Clock
When the clock cycles from high to low:
- the right-most sees its (inverted) clock signal go from
low to high, and so it toggles its state to 1
- the next flip-flop sees its clock signal go from high to
low, and so it doesn't toggle
- and so, neither do the other flip-flops...
o9 ?
So, the output is 0001: (?
b o et o' Lot 0°I o
; ’ ’ = [®]enaie
Clock

1

CS@VT Computer Organization | ©2005-2012 McQuain



" mod-16 Counter: second tick Counters 15

Suppose the counter is now in the state shown below (output is 0001).

D3 D2 D1 DO

9060

— J Q o ey J Q e Q o
i la @‘ e KE[! ™1 M‘r]
L A @ @Enable
" ’f\ oificun
1

When the clock cycles from high to low (2" cycle):

- the right-most sees its (inverted) clock signal go from low
to high, and so it toggles its state to O

- the next flip-flop sees its clock signal go from low to
high, and so it toggles its state to 1

- the next flip-flop sees its clock signal go from high to
low, so it doesn't toggle

D3 Dz D1 Do

999¢
—
Fol loofol koo e

L S 3 & @Enabie

Clock

So the output is 0010.

L

1
bl

CS@VT Computer Organization | ©2005-2012 McQuain



I mod-16 Counter: third tick Counters 16

Suppose the counter is now in the state shown below (output is 0010).

D3 Dz D1 Do

995%
o°[ Lo 'J@Qj I—l>‘ B o° 'JmQJ

IKend IKenn IKeno 1Keno

: S 3 & @Enabie

N Clock

L

1
bl

When the clock cycles from high to low (3rd cycle):
- the right-most sees its (inverted) clock signal go

from low to high, and so it toggles its state to 1
- the next flip-flop sees its clock signal go from high \J

to low, and so it doesn't toggle

D3 D2 D1 DO

©
So the output is 0011. e C{I'D c? ?
I-l>e o[ Lo 0 I—l>: 3 o°[ 'Jn?‘l
L l - - T U - T U - J‘ : @Enable
Clock

CS@VT Computer Organization | ©2005-2012 McQuain



" mod-16 Counter: fourth tick Counters 17

Suppose the counter is now in the state shown below (output is 0011).

D3 D2 D1 DO
@C‘f’?
o

TiKeno T1Keno T1Keno T1eno

L 2 ! & @Enabie

Clock

-
ao

1
¥
e,

|
X

2

e@

1

L

When the clock cycles from high to low (4th cycle):

- the right-most sees its (inverted) clock signal go
from low to high, and so it toggles its state to O

- the next flip-flop sees its clock signal go from low to
high, and so it toggles its state to 0

- the next flip-flop sees its clock signal go from low to
high, and so it toggles its state to 1 Eé E‘I;) %%
o E
L0]

So the output is 0100. |—l>—= 3 0°[" Lpo—f 0°[ I-l>t 3 0°[ 7 e

+icenn $1Keno T

L & & 2 @Enable

Clock

1

£

CS@VT Computer Organization | ©2005-2012 McQuain



