
CS@VT June 2010 ©2006-10 McQuain, Feng & Ribbens

structs in C

Computer Organization I

1struct Copy Operation
In C, variables are copied in three situations:

- when used as the right side of an assignment operation

- when used as a parameter in a function call

- when used as the return value from a function

struct LocationType {
int X, Y;

};
typedef struct LocationType Location;
. . .
Location A;
A.X = 1;
A.Y = 5;

Location B;
B = A; // members of A are copied into the

// corresponding members of B

In most cases, the default copy mechanism for struct types is adequate.

CS@VT June 2010 ©2006-10 McQuain, Feng & Ribbens

structs in C

Computer Organization I

2struct with Deep Content
A struct type may have "deep" content:

struct PolynomialType {
unsigned int Degree;
int* Coeff; // dynamically-allocated array

};

typedef struct PolynomialType Polynomial;
. . .
Polynomial P;

P.Degree = 2;
P.Coeff = malloc(3 * sizeof(int));

Degree: 2

Coeff

Note:

Coeff is a member of P, but…

… the array is NOT a member.

P

CS@VT June 2010 ©2006-10 McQuain, Feng & Ribbens

structs in C

Computer Organization I

3

bool initPoly(Polynomial* const P, const uint8_t D, const int64_t* const C) {

if (P == NULL || C == NULL) return false;

P->Degree = D;
P->Coeff = malloc((P->Degree + 1) * sizeof(int64_t));

if (P->Coeff == NULL) {
P->Degree = 0;
return false;

}

for (uint8_t i = 0; i <= P->Degree; i++) {
P->Coeff[i] = C[i];

}

return true;
}

struct Variable Initialization

Guard against NULL pointer errors

Allocate array to hold coefficients

Check for allocation failure

Copy coefficients

CS@VT June 2010 ©2006-10 McQuain, Feng & Ribbens

structs in C

Computer Organization I

4Copying a struct with Deep Content
Copying a struct variable that has "deep" content may have unintended consequences:

Polynomial P, Q;

P.Degree = 2;
P.Coeff = malloc(3 * sizeof(int));

Q = P;

Degree: 2

Coeff

When the value of P.Coeff is
copied into Q.Coeff, we get an
effect of sharing that is rarely
desirable…

… this is known as the deep copy
problem (or the shallow copy
problem).

Degree: 2

Coeff

P

Q

CS@VT June 2010 ©2006-10 McQuain, Feng & Ribbens

structs in C

Computer Organization I

5What's Wrong with a Shallow Copy?

Polynomial P, Q;

P.Degree = 2;
P.Coeff = malloc(3 * sizeof(int));

P->Coeff[0] = 1;
P->Coeff[1] = 2;
P->Coeff[2] = 3;

Q = P;

P->Coeff[2] = 5; // "back-door"
// change to Q

free(Q->Coeff); // P loses its
// coefficients

Degree: 2

Coeff

Degree: 2

Coeff

321

P

Q

CS@VT June 2010 ©2006-10 McQuain, Feng & Ribbens

structs in C

Computer Organization I

6Making a Deep Copy
The usual semantics of assignment would lead you to expect we'd have gotten:

But this is NOT what happens by default.

To make this happen, you must explicitly (i.e., via code you write):

- copy the "shallow" content from P into Q

- allocate new memory for the "deep" content to be copied from P into Q

- copy the "deep" content (e.g., the coefficient values in the array)

Degree: 2

Coeff

P

Degree: 2

Coeff

Q

CS@VT June 2010 ©2006-10 McQuain, Feng & Ribbens

structs in C

Computer Organization I

7Implementing a Deep Copy
In C we handle deep copying by implementing an appropriate function:

/**
* Initializes *Target from *Source as described below.
*
* Pre: Target != NULL,
* Source != NULL,
* Source->C[i] initialized for i = 0:Source->Degree
* Post: Target->Degree == Source->Degree
* Target->Coeff != Source->Coeff
* Target->Coeff[i] == Source->Coeff[i] for i = 0:Source->Degree
*
* Returns: false if *Target cannot be properly initialized, true otherwise
*/

bool copyPoly(Polynomial* const Target, const Polynomial* const Source) {

. . .
}

CS@VT June 2010 ©2006-10 McQuain, Feng & Ribbens

structs in C

Computer Organization I

8

bool copyPoly(Polynomial* const Target, const Polynomial* const Source) {

if (Source == NULL || Source->Coeff == NULL || Target == NULL)
return false;

free(Target->Coeff);

Target->Coeff = malloc((Source->Degree) * sizeof(int64_t));

if (Target->Coeff == NULL) {
Target->Degree = 0;
return false;

}

Target->Degree = Source->Degree;
for (int i = 0; i <= Source->Degree; i++) {

Target->Coeff[i] = Source->Coeff[i];
}
return true;

}

Implementing a Deep Copy
The basic steps are relatively straightforward:

Could this be simplified by calling initPoly()? If so, how?

Guard against NULL pointer errors

Deallocate old array in Target, if any

Copy Source into Target

Allocate new array for Target

