I struct Copy Operation structs in C 1

In C, variables are copied in three situations:
- when used as the right side of an assignment operation
- when used as a parameter in a function call

- when used as the return value from a function

struct LocationType {
int X, Y;
}:
typedef struct LocationType Location;

Location A;
A.X
ALY

S;

Location B;
B = A; // members of A are copied iInto the
// corresponding members of B

In most cases, the default copy mechanism for struct types is adequate.

Computer Organization |

I struct with Deep Content structs in C 2

A struct type may have "deep" content:

struct PolynomialType {
unsigned Int Degree;
int* CoefT; // dynamically-allocated array

};
typedef struct PolynomialType Polynomial;
Polynomial P;

P_.Degree = 2;
P.Coeff = malloc(3 * sizeof(int));

Note:

Degree: 2 CoefT is a member of P, but...

Coeff ... the array is NOT a member.

Computer Organization |

M struct Variable Initialization structs in C 3

bool i1nitPoly(Polynomial* const P, const uint8 t D, const 1Int64 _t* const C) {

iIf (P ==NULL || C == NULL) return false; Guard against NULL pointer errors

P->Degree = D; Allocate array to hold coefficients

P->Coeff = malloc((P->Degree + 1) * sizeof(int64_t));

iIfT (P->Coeff == NULL) { Check for allocation failure
P->Degree = 0;
return false;

}

for (uint8_t 1
P->Coeff[1]

O; 1 <= P->Degree; 1++) { Copy coefficients
CIi];

}

return true;

Computer Organization |

Copying a struct with Deep Content structs in C 4

Copying a struct variable that has "deep" content may have unintended consequences:

Polynomial P, Q;

P.Degree = 2;
P.Coeff = malloc(3 * sizeof(int));

When the value of P.CoefT is
copied into Q. CoefT, we get an
effect of sharing that is rarely
desirable...

Degree: 2
Coeff

... this is known as the deep copy
problem (or the shallow copy
problem).

Computer Organization |

What's Wrong with a Shallow Copy? structsinC 5

N
|_l

Polynomial P, Q;
Degree: 2

P.Degree = 2;
Coeff

P.Coeff = malloc(3 * sizeof(int));

P->Coeff[0]
P->Coeff[1]
P->Coeff[2]

1
2;
3-

Q = P;

P->Coeff[2] = 5; // 'back-door™
// change to Q

free(Q->Coeff); // P loses its
// coefficients

Computer Organization |

Making a Deep Copy structs in C 6

The usual semantics of assignment would lead you to expect we'd have gotten:

Degree: 2
Coeff

Degree: 2
Coeff

But this is NOT what happens by default.

To make this happen, you must explicitly (i.e., via code you write):
- copy the "shallow" content from P into Q

- allocate new memory for the "deep" content to be copied from P into Q

- copy the "deep" content (e.g., the coefficient values in the array)

Computer Organization |

B Implementing a Deep Copy structs in C 7

In C we handle deep copying by implementing an appropriate function:

/**
* Initializes *Target from *Source as described below.
x*
* Pre: Target != NULL,
* Source 1= NULL,
* Source->C[1] initialized for 1 = O0:Source->Degree
* Post: Target->Degree == Source->Degree
* Target->Coeff != Source->Coeff
* Target->Coeff[i] == Source->Coeff[i] for 1 = 0:Source->Degree
*
*

Returns: false 1t *Target cannot be properly initialized, true otherwise
*/
bool copyPoly(Polynomial* const Target, const Polynomial®* const Source) {

Computer Organization |

Implementing a Deep Copy structs in C 8

The basic steps are relatively straightforward:

bool copyPoly(Polynomial* const Target, const Polynomial* const Source) {

iIT (Source == NULL || Source->Coeff == NULL || Target == NULL)
return false; _ :
Guard against NULL pointer errors

free(Target->Coeff); Deallocate old array in Target, if any

Target->Coeff = malloc((Source->Degree) * sizeof(int64_t));

1T (Target->Coeff == NULL) { Allocate new array for Target
Target->Degree = 0O;
return false;

}

Target->Degree = Source->Degree; Copy Source into Target
for (int 1 = 0; 1 <= Source->Degree; 1++) {

Target->Coeff[1] = Source->Coeff[i];
+

return true;

}

Could this be simplified by calling initPoly()? If so, how?

Computer Organization |

