
CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in MIPS

Computer Organization I

1Leaf and Non-Leaf Procedures
A leaf procedure is one that doesn't all any other procedures.

A non-leaf procedure is one that does call another procedure.

Non-leaf procedures pose an additional, but simple, challenge; we make procedure calls
by executing a jump-and-link instruction:

jal procedure_0 # puts PC+4 into $ra for return

But, if procedure_0 also makes a call, say

jal procedure_1 # puts PC+4 into $ra for return

then the original return address just got overwritten… the effect is fascinating…

CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in MIPS

Computer Organization I

2Preserving the Return Address
Non-leaf procedures must back up the value of their return address before making a call to
another procedure:

addi $sp, $sp, -4 # make room on stack
sw $ra, 0($sp) # save return address

And they must restore the return address before they attempt to return:

lw $ra, 0($sp) # retrieve return address
addi $sp, $sp, 4 # pop it off the stack

Failure to do this will almost certainly lead to a catastrophic runtime failure.

The safest way to do this is to back up the address immediately when the procedure is
entered, and to restore it immediately before the return is executed. Of course, you must
keep careful track of the stack pointer during all of this…

CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in MIPS

Computer Organization I

3Factorial: First Version
###
Returns factorial of parameter.
#
Pre:
$a0 stores N
Post:
$v0 stores N!
#
Modifies: $t0, $t1, $v0, $a0
#
fac1:

li $t0, 1 # check for base case
bgt $a0, $t0, recurse
li $v0, 1 # if so, set $v0
jr $ra # and return

recurse:
move $t1, $a0 # save N
addi $a0, $a0, -1 # calc N-1 for recursive call
jal fac1 # calc (N-1)!
mul $v0, $v0, $t1 # multiply that by N

jr $ra # and return

Unfortunately, fac1 falls into
an infinite loop when it's
called with any value larger
than 1 for $a0.

CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in MIPS

Computer Organization I

4What went wrong?
fac1:

li $t0, 1 # check for base case
bgt $a0, $t0, recurse
li $v0, 1 # if so, set $v0
jr $ra # and return

recurse:
move $t1, $a0 # save N
addi $a0, $a0, -1 # calc N-1 for recursive call
jal fac1 # calc (N-1)!
mul $v0, $v0, $t1 # multiply that by N

jr $ra # and return

Making the recursive call overwrites the original return address with the address of what?

And the effect of that is….?

And the moral of that is….?

An infinite loop in a pgm with no loops.

Back up $ra before a call in a non-leaf proc.

CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in MIPS

Computer Organization I

5Factorial: Second Version
fac2:

li $t0, 1 # check for base case
bgt $a0, $t0, recurse
li $v0, 1 # if so, set return value
jr $ra # and return

recurse:
move $t1, $a0 # save N
addi $a0, $a0, -1 # calc N-1 for recursive call
addi $sp, $sp, -4 # save return address on stack
sw $ra, ($sp)
jal fac2 # calc (N-1)!
mul $v0, $v0, $t1 # multiply that by N

lw $ra, ($sp) # restore return address
addi $sp, $sp, 4
jr $ra # and return

Unfortunately, fac2 returns
32 when called with $a0 == 6.

CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in MIPS

Computer Organization I

6What went wrong?
fac2:
. . .

recurse:
move $t1, $a0 # save N
addi $a0, $a0, -1 # calc N-1 for recursive call
addi $sp, $sp, -4 # save return address on stack
sw $ra, ($sp)
jal fac2 # calc (N-1)!
mul $v0, $v0, $t1 # multiply that by N

lw $ra, ($sp) # restore return address
addi $sp, $sp, 4
jr $ra # and return

During the recursive call, the previous contents of $t1 and $a0 are overwritten.

Moral: before making a call, back up your registers as necessary.

CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in MIPS

Computer Organization I

7What went wrong: Details

fac2:
. . .

recurse:
move $t1, $a0
addi $a0, $a0, -1
addi $sp, $sp, -4
sw $ra, ($sp)
jal fac2
mul $v0, $v0, $t1

lw $ra, ($sp)
addi $sp, $sp, 4
jr $ra

Let's say we call this with $a0 set to 3:

Moral: before making a call, back up your registers as necessary.

In the first (nonrecursive) call, fac2:
- puts 3 into $t1
- sets $a0 to 2

In the second call, fac2:
- puts 2 into $t1
- sets $a0 to 1

In the third call, fac2:
- puts 1 into $v0
- returns

fac2:
- mult $t1 and $v0
- returns 2

fac2:
- mult $t1 and $v0
- returns 4

CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in MIPS

Computer Organization I

8Factorial: Stack Organization

| |
old $sp | | 0x7FFFEFFC

+-------------------------+
| saved return address |
+-------------------------+

new $sp | saved N | 0x7FFFEFF4
+-------------------------+

In order to fix the execution of the recursive factorial procedure, we need to use the stack
to save values that would otherwise be overwritten when a recursive call takes place.

Here's one idea for organizing the stack:

on entry to proc

after saving
return address

and N

CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in MIPS

Computer Organization I

9Factorial: Third Version
fac3:

li $t0, 1 # check for base case
bgt $a0, $t0, recurse
li $v0, 1 # if so, set return value
jr $ra # and return

recurse:
addi $sp, $sp, -8 # make room on stack for
sw $ra, 4($sp) # return address, and
sw $a0, 0($sp) # N

addi $a0, $a0, -1 # calc N-1 for recursive call
jal fac3 # calc (N-1)!

lw $t1, 0($sp) # restore N from stack
mul $v0, $v0, $t1 # multiply (N-1)! by N

lw $ra, 4($sp) # restore return address from
stack

addi $sp, $sp, 8 # and restore stack pointer
jr $ra # and return

CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in MIPS

Computer Organization I

10Factorial: Stack Trace

| |
old $sp | | 0x7FFFEFFC

+-------------------------+
| saved $ra to main |
+-------------------------+

$sp | saved 3 | 0x7FFFEFF4
+-------------------------+

Say we call factorial(3):

on first call

(not recursive)

Third call triggers base case and returns with $v0 == 1

on second call

(recursive)

| |
old $sp | | 0x7FFFEFFC

+-------------------------+
| saved $ra to main |
+-------------------------+
| saved 3 | 0x7FFFEFF4
+-------------------------+
| saved $ra to main |
+-------------------------+

new $sp | saved 2 | 0x7FFFEFEC
+-------------------------+

Saved value of N (2) is retrieved from stack and multiplied to $v0; 2*1 is
returned to from second call.

Saved value of N (3) is retrieved from stack and multipled to $v0; 3*2*1 is
returned from first call.

