
CS@VT November 2009 ©2006-09 McQuain, Feng & Ribbens

Runtime Stack

Computer Organization I

1MIPS Memory Organization
In addition to memory for static data and the program text (machine code), MIPS provides
space for the run-time stack (data local to procedures, etc.) and for dynamically-allocated
data:

Dynamic data is accessed via pointers held by the program being executed, with addresses
returned by the memory allocator in the underlying operating system.

Stack

Dynamic data
Static data

Text
Reserved

$sp # last word alloc on stack

$gp # ptr into global data

$pc # ptr to next instruction

CS@VT November 2009 ©2006-09 McQuain, Feng & Ribbens

Runtime Stack

Computer Organization I

2The System Stack
MIPS provides a special register, $sp, which holds the address of the most recently
allocated word on a stack that user programs can employ to hold various values:

Note that this run-time stack is "upside-down". That is, $sp, decreases when a value is
added to the stack and increases when a value is removed.

So, you decrement the stack pointer by 4 when pushing a new value onto the stack and
increment it by 4 when popping a value off of the stack.

CS@VT November 2009 ©2006-09 McQuain, Feng & Ribbens

Runtime Stack

Computer Organization I

3Using the System Stack
MIPS programs use the runtime stack to hold:

- parameters to be passed to a called procedure
- register values that need to be preserved during the execution of a called procedure

and restored after the return
- saved procedure return address, if necessary
- local arrays and structures, if any

activation record
or stack frame
for called
procedure

CS@VT November 2009 ©2006-09 McQuain, Feng & Ribbens

Runtime Stack

Computer Organization I

4Finding the Median Value
Consider implementing a MIPS procedure to find the median value in an array of integers.

The only efficient way to do this is to partially sort the array elements until the median
value is revealed.

For example, given the list of eleven values below below

17 43 21 19 6 34 32 25 45 29 13

we could sort it into the following form

6 13 17 19 21 25 . . .

and then see that the median is clearly 25.

CS@VT November 2009 ©2006-09 McQuain, Feng & Ribbens

Runtime Stack

Computer Organization I

5Stack Layout
What we do not want to do is destroy the original list while finding the median.

So, we need to give our MIPS procedure a copy of the list, and the place to do that is the
runtime stack.

Before calling the procedure, we will organize the stack like this:

+---------+
| A[N-1] |
+---------+
| . . . |
+---------+
| A[0] |
+---------+
| N | <-- $sp
+---------+

The procedure can then manipulate the list elements directly on the stack, and use an
appropriate register to return the median value.

CS@VT November 2009 ©2006-09 McQuain, Feng & Ribbens

Runtime Stack

Computer Organization I

6Creating the Stack Layout
The caller must create room on the stack to hold the necessary data:

Size: .word 10
List: .word 17, 43, 21, 19, 6, 34, 32, 25, 45, 29, 13

.text
main:

lw $s0, Size # get size of list
li $s4, 4 # size of word
mul $s4, $s4, $s0 # compute size of array on stack
addi $s4, $s4, 4 # allow space for array dimension
sub $sp, $sp, $s4 # make room on stack for list and dimension

. . .

used

free

$sp-->

old

free
$sp-->

space for array and dimension

CS@VT November 2009 ©2006-09 McQuain, Feng & Ribbens

Runtime Stack

Computer Organization I

7Creating the Stack Layout
The caller must then write the necessary data to the stack in the correct places:

. . .
sw $s0, ($sp) # put size onto the stack
move $s1, $sp # get pointer to top of stack
la $s2, List # get pointer to first list element
li $t0, 0 # count list elements as they are copied

loop: beq $t0, $s0, done
addi $s1, $s1, 4 # step to location for next list element
lw $s3, ($s2)
sw $s3, ($s1) # put element onto stack
addi $t0, $t0, 1
addi $s2, $s2, 4 # step to next list element
b loop

done:

29

10

old

free
$sp-->

. . .

17

CS@VT November 2009 ©2006-09 McQuain, Feng & Ribbens

Runtime Stack

Computer Organization I

8Called Procedure's View
The called procedure retrieves/writes data on the stack as needed:

find_median:

lw $t3, ($sp) # get list dimension
addi $t5, $sp, 4 # get address of beginning of list

code to perform partial sort of array elements on the stack
using any suitable algorithm

lw $t0, ($sp) # get array size
li $t1, 2
div $t0, $t1 # divide it by 2
mfhi $t1 # get the remainder from the divisio
beq $t1, $zero, even # check whether size was even or odd

list has odd number of elements; set median
odd: . . . # median is in middle cell of array

b store

list has even number of elements; calculate median
even: . . . # median is average of two elements

store:
swc1 $f0, ($sp) # put median onto stack for caller
jr $ra # return to caller

CS@VT November 2009 ©2006-09 McQuain, Feng & Ribbens

Runtime Stack

Computer Organization I

9Cleaning Up the Stack
In this case, it was the caller who put stuff onto the stack, so the caller's responsible for
popping it off:

. . .
jal find_median

l.s $f12, ($sp) # retrieve return value
add $sp, $sp, $s4 # pop stack pointer to original position

. . .

used

free

$sp-->

old

free
$sp-->

space for array and dimension

CS@VT November 2009 ©2006-09 McQuain, Feng & Ribbens

Runtime Stack

Computer Organization I

10Local Storage on the Stack
In some cases, the called procedure needs more local storage space than the available
registers can provide. For example, a procedure might need to create an array whose
dimension is determined by a parameter to the procedure:

proc:
. . .
sub $sp, $sp, $t7 # need a local array of size $t7
move $t0, $sp # $t0 points to the array on the stack

do stuff with the array, BUT better not mess up $t7

add $sp, $sp, $t7 # pop the array off the stack
. . .

CS@VT November 2009 ©2006-09 McQuain, Feng & Ribbens

Runtime Stack

Computer Organization I

11The Frame Pointer
The frame pointer register, $fp, is intended as a "bookmark" to keep track of where the
stack pointer was when a procedure was entered:

proc:
move $fp, $sp # $fp points to original stack top

sub $sp, $sp, $a0 # need a local array of size $a0
move $t0, $sp # $t0 points to the array on the stack

do stuff with the array; mess with $a0 all you like

move $sp, $fp # restore stack pointer to original value
jr $ra # right before you return

CS@VT November 2009 ©2006-09 McQuain, Feng & Ribbens

Runtime Stack

Computer Organization I

12The $sp Contract
The implementation of a procedure must guarantee that the value of $sp is the same
when the return is executed as it was when the procedure was entered.

Failure to do this can cause all sorts of problems…

CS@VT November 2009 ©2006-09 McQuain, Feng & Ribbens

Runtime Stack

Computer Organization I

13Register Backup on the Stack
In some cases, the caller and/or the called procedure must use the stack to preserve values
of $s or $t registers:

Assume the caller has used the registers $t0 and $t5, and needs for those
registers to have the same values after a procedure call:

addi $sp, $sp, -8 # make room on stack for two register values
sw $t0, 4($sp) # back up $t0 at $sp + 4
sw $t5, 0($sp) # back up $t5 at $sp

Now push anything on the stack need to prepare for the procedure call:
. . .

And then make the call:
jal find_median

Retrieve results from stack, if necessary, and pop all the call-related
stuff from the stack:

. . .
And then retrieve the pointer values:

lw $t5, 0($sp)
lw $t0, 4($sp)

And then pop them off the stack:
add $sp, $sp, 8

CS@VT November 2009 ©2006-09 McQuain, Feng & Ribbens

Runtime Stack

Computer Organization I

14Leaf and Non-Leaf Procedures
A leaf procedure is one that doesn't all any other procedures.

A non-leaf procedure is one that does call another procedure.

Non-leaf procedures pose an additional, but simple, challenge; we make procedure calls
by executing a jump-and-link instruction:

jal procedure_0 # puts PC+4 into $ra for return

But, if procedure_0 also makes a call, say

jal procedure_1 # puts PC+4 into $ra for return

then the original return address just got overwritten… the effect is fascinating…

CS@VT November 2009 ©2006-09 McQuain, Feng & Ribbens

Runtime Stack

Computer Organization I

15Preserving the Return Address
Non-leaf procedures must back up the value of their return address before making a call to
another procedure:

addi $sp, $sp, -4 # make room on stack
sw $ra, 0($sp) # save return address

And they must restore the return address before they attempt to return:

lw $ra, 0($sp) # retrieve return address
addi $sp, $sp, 4 # pop it off the stack

Failure to do this will almost certainly lead to a catastrophic runtime failure.

The safest way to do this is to back up the address immediately when the procedure is
entered, and to restore it immediately before the return is executed. Of course, you must
keep careful track of the stack pointer during all of this…

