I Array Declaration and Storage Allocation

The first step is to reserve sufficient space for the array:

MIPS Arrays 1

_data

list: .Space 1000 # reserves a block of 1000 bytes

This yields a contiguous block of bytes of the specified
Size.

The label is a symbolic name for the address of the beginning
of the array.
list == 1004000

The size of the array is specified in bytes... could be used as:
array of 1000 char values (ASCII codes)
array of 250 int values
array of 125 double values

There is no sense in which the size of the array is "known" by
the array itself.

Computer Organization |

Memory

1004000

1004002

1004003

1004004

1004999

1SI| 10J uoIedo|e

Array Declaration with Initialization

An array can also be declared with a list of initializers:

.data
vowels: _byte "a®", "e", "1", "0", "u"
pow2: .word 1, 2, 4, 8, 16, 32, 64, 128

vowe I's names a contiguous block of 5 bytes, set to store the
given values; each value is stored in a single byte.

Address of vowels[k] == vowels + Kk

pow2 names a contiguous block of 32 bytes, set to store the
given values; each value is stored in a word (4 bytes)

Address of pow2[k] == pow2 + 4 * k

Computer Organization |

MIPS Arrays 2

1004000
1004001
1004002
1004003
1004004
1004005
1004006
1004007
1004008
1004009
1004010
1004011
1004012

Memory

97

101

105

111

117

S|9MOA 10} J0|[e

zZzmod 10J 20|e

I Another View MIPS Arrays 3

Viewed as hex nybbles, the contents of memory would look like (in little-endian):

(o))
[N
(o))

5

(o))
(]

6F | 75 0

[y

00 {00 |00 |O

N

00 |00 |00

10040000
10040001
10040002
10040008
10040012

0110 0001

Note that endian-ness affects the ordering of bytes, not the ordering of the nybbles within
a byte.

Computer Organization |

W Array Traversal and Initialization MIPS Arrays 4

Here's an array traversal to initialize a list of integer values:

.data
list: .Space 1000
listsz: .word 250 # using as array of integers
-text
main: Iw $s0, listsz # $sO0 = array dimension
la $s1, list # $s1 = array address
li $to, O # $t0 = # elems iInit"d

initlp: beq $t0, $s0, initdn
Sw $s1, ($sl) # list[i] = addr of list[i]
addi $s1, $si1, 4 # step to next array cell
addi $t0, $tO, 1 # count elem just init"d

b initlp
initdn:
li $v0, 10
syscall
N\
QTP: why 47

Computer Organization |

I Array Traversal Details MIPS Arrays 5

1004008
- - - 1004008
initlp: beq $t0, $s0, initdn
sw $s1, ($sl) - 1004012
addi $s1, $s1, 4 T2
addi $t0, $t0, 1 1004016
b initlp 1004016
initdn
1004020
A variable that stores an address is called a pointer. 1004020
Here, $s1 is a pointer to a cell of the array Hist. 1004024
We can re-target $s1 to a different cell by adding an appropriate 1004024
value to it.

Computer Organization |

I Alternate Traversal Logic MIPS Arrays 6

This traversal uses pointer logic to terminate the loop: / 1004008
_data 1004008
list: .Space 1000
listsz: .word 250
1004012
. SIS . 1004012
main: la $s1, list
Iw $s0, listsz
addi $s0, $sO, -1 > 1004016
sl $s0, $s0, 2
add $s0, $s0, $sl 1004016
initlp: bgt $sl1, $s0, 1A
Sw $s1, ($s1)
addi $s1, $si1, 4
b initlp
initdn
I $v0, 10 1004996
syscall \\\‘\\\\\
1004024
QTP: rewrite this using the do-while pattern shown in the previoumk
1005000

Computer Organization |

W Array Bounds Issues

An array can also be declared with a list of initializers:

.data
vowels: _byte "a®", "e", "1", "0", "u"
pow2: .word 1, 2, 4, 8, 16, 32, 64, 128

What happens if you access an array with a logically-invalid
array index?

vowels|[5] ?? contents of address 1004005

While vowe Is[5] does not exist logically as part of the array,
it does specify a physical location in memory.

What is actually stored there is, in general, unpredictable.

In any case, the value is not one that we want...

Computer Organization |

MIPS Arrays 7

1004004
1004005
1004006
1004007
1004008

1004012

1004036

Memory

117

S|9MOA 10} J0|[e

zmod 10J 20|e

I Special Case: Array of Characters MIPS Arrays 8

As we've seen, the declaration:

.data
vowels: _byte

a", "e", "i", "o", "u

Leads to the allocation: 61 |es |69 |6 |75

However, the declaration:

.data
vowels: .asciiz "aeiou'

Leads to the allocation: 61 |65 |69 |6F |75 |00

An extra byte is allocated and initialized to store 0x00, which acts as a marker for the end
of the character sequence (i.e., string).

This allows us to write loops to process character strings without knowing the length of
the string in advance.

Computer Organization |

B Example: Searching a Character String

MIPS Arrays 9

char:

vowels:

srchlp:

srchdn:

load character to look for

1t"s not found yet

_data

-byte "u*®

.asciiz "aeiou"

. text

Ib $t0, char

li $t1, O

la $s0, vowels

Ib $s1, ($s0)

beq $s1, $zero, srchdn

seq $tl, $s1, $t0
bgt $t1, $zero, srchdn
addi $s0, $sO, 1

Ib $s1, ($s0)
b srchlp
li $v0, 10

syscall

HHHHHF

set pointer to vowels[O]
get vowels[O]

check for terminator
compare characters
check 1T found

no, step to next vowel
load next vowel

Computer Organization |

B Example: Setup Detalls MIPS Arrays 10

Ib $t0, char # load character to look for
li $tl, O # 1t"s not found yet

la $s0, vowels # set pointer to vowels[O]
Ib $s1, ($s0) # get vowels[O]

char vowels

$t0 {00 |00 |00 | 75 | € 75 |61 [65 |69 |6F | 75 | 00

$t1 100 |00 [00 | 00

$s0

$s1{00 (00 |00 |61 | €

Computer Organization |

I Example: Loop Details

MIPS Arrays 11

srchlp:

srchdn:

beq

seq
bgt
addi

Ib

$s1, $zero, srchdn
$tl, $s1, $t0

$tl, $zero, srchdn
$s0, $s0, 1

$s1, ($s0)

srchlp

string terminator is 0x00

$tl = 1 iff $s1l == $t0

1T match found, exit loop
step to next elem of vowels

load next elem of vowels

Computer Organization |

B Example: Print Array Contents MIPS Arrays 12

.data
list: -word 2, 3, 5, 7, 11, 13, 17, 19, 23, 29
size: -word 10

Iw $t3, size

la $tl, list # get array address

Ii $t2, O # set loop counter
prnlp:

beq $t2, $t3, prndn # check for array end

Iw $a0, ($t1) # print list element

li $vOo, 1

syscall

la $a0, NL # print a newline

li $v0, 4

syscall

addi $t2, $t2, 1 # advance loop counter

addi $t1, $t1, 4 # advance array pointer

b prnlp # repeat the loop
prndn:

Computer Organization |

I Example: syscall Details MIPS Arrays 13

syscall #1 prints and integer to stdout

Iw $a0, ($t1) # takes value via register $a0
I $vO, 1 # takes syscall # via register $vO
syscall

- . # syscall #4 prints asciiz to stdout
la $a0, NL # takes address of string via $a0
I $v0, 4 # takes syscall # via register $vO

syscall

Computer Organization |

B Example: Palindromes MIPS Arrays 14

A palindrome is a sequence of characters that reads the same from left to right as from
right to left:

able was i ere | saw elba
anna
madam

It is generally permitted to adjust capitalization, spaces and punctuation:

A man, a plan, a canal, Panama!
Madam, I'm Adam.

For the purpose of an example, we will not allow such manipulations.

Computer Organization |

B Example: Reading a String

We must reserve space to store the characters:

MIPS Arrays 15

buffer: .Space 1025 # 1024 maximum, plus a terminator

We'll want to issue a prompt to the user to enter the string to be tested:

user_prompt:

_asciiz "Enter ... of no more than 1024 characters.\n"

We can use a couple of system calls to get the input:

main:
Prompt the user to enter a string:
la $a0, user_prompt
I $v0, 4
syscall

1a $a0, buffer
I $al, 1024
Ii $v0, 8
syscall

Read the string, plus a terminator, into the buffer

Computer Organization |

B Example: Finding the End of the String MIPS Arrays 16

We must locate the end of the string that the user entered:

la $tl, buffer # lower array pointer = array base
la $t2, buffer # start upper pointer at beginning
LengthLp:

Ib $t3, ($t2) # grab the character at upper ptr
begz $t3, LengthDn # if $t3 == 0, we"re at the terminator
addi $t2, $t2, 1 # count the character
b LengthlLp # repeat the loop
LengthDn:

addi $t2, $t2, -2 # move upper pointer back to last char

QTP: why -2?

Computer Organization |

I Example: Testing the String MIPS Arrays 17

Now we'll walk the pointers toward the middle of the string, comparing characters as we

go:

TestlLp:
bge $t1l, $t2, Yes # 1T lower pointer >= upper pointer, yes
Ib $t3, ($tl) # grab the character at lower ptr
Ib $t4, ($t2) # grab the character at upper pointer
bne $t3, $t4, No # 1f different, it"s not a palindrome
addi $t1, $t1, 1 # increment lower ptr
subr $t2, $t2, 1 # decrement upper ptr
b TestLp # restart the loop

Computer Organization |

I Example: Reporting Results MIPS Arrays 18

Yes:
la $a0, 1s palindrome_msg # print confirmation
1 $vO0, 4
syscall
b exit
No:
la $a0, is_not _palindrome msg # print denial
1 $vO0, 4
syscall

Computer Organization |

