
CS 1704 Intro Data Structures and Software Engineering Test 2
Fall 2000

Form: A Page 1 of 9

READ THIS NOW!

• Print your name in the space provided below.
• Print your name and ID number on the Opscan form; be sure to code your ID number on the Opscan

form. Code Form A on the Opscan.
• Choose the single best answer for each question — some answers may be partially correct. If you mark

more than one answer, it will be counted wrong.
• Unless a question involves determining whether given C++ code is syntactically correct, assume that it

is valid. The given code has been compiled and tested, except where there are deliberate errors. Unless
a question specifically deals with compiler #include directives, you should assume the necessary
header files have been included.

• Be careful to distinguish integer values from floating point (real) values (containing a decimal point). In
questions/answers which require a distinction between integer and real values, integers will be
represented without a decimal point, whereas real values will have a decimal point, [1704 (integer),
1704.0 (real)].

• The answers you mark on the Opscan form will be considered your official answers.
• When you have completed the test, sign the pledge at the bottom of this page and turn in the test.
• This is a closed-book, closed-notes examination. No calculators or other electronic devices may be used

during this examination. You may not discuss (in any form: written, verbal or electronic) the content of
this examination with any student who has not taken it. You must return this test form when you
complete the examination. Failure to adhere to any of these restrictions is an Honor Code violation.

• There are 20 questions, equally weighted. The maximum score on this test is 100 points.

Do not start the test until instructed to do so!

Print Name (Last, First) Solution

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

 N. D. Barnette
 signature

CS 1704 Intro Data Structures and Software Engineering Test 2
Fall 2000

Form: A

I. Class Pointers

For the following 2 questions, assume the following declarations:

class Element {
private:

int value;
Element* pointer;

public:
void bar();

};

//inside the Element member function bar()
Element* node;
node = new Element;
node->value = -1;
node->pointer = NULL;
Element thing = *node;
thing.pointer = node;
thing.value = -2;
thing.pointer->value = -3;
thing.pointer->pointer = thing.pointer;

1. From inside the same member function as the above code,
 what is the data type of the expression at the right:

1) Element
2) Pointer

3) Element*
4) Pointer*

2. From inside the same member function as the above code, which of
(i.e., point), the Element object containing the integer -2 to the
itself)?

1) node->pointer = node;
2) thing->pointer = thing;
3) node.pointer = &node;

4
5
6

3. From inside the same member function as the above code,
 what is the data type of the expression at the right?

1) Element
2) Pointer

3) Element*
4) Pointer*

4. Assuming the default (language supplied) destructor (i.e. no destruc
the code above, after the member function would complete executio
would still exist in memory?

1) 1
2) 2

3) 3
4) 4

Only 1 Element object was
allocated dynamically,
default language destructor
do NOT automatically de-
allocate dynamic memory.

-3

-2

●

thing

node

Code Execution Results
thing.pointer->pointer
5) class*
6) None of the above

 the following statements could be used to connect,
Element object containing the integer –2, (i.e. to

) thing.pointer = &thing;
) thing->pointer = &thing;
) None of the above
*node
Page 2 of 9

5) Element->
6) None of the above

tor has been explicitly implemented), consider just
n, how many memory leaked Element objects

5) 0
6) None of the above

CS 1704 Intro Data Structures and Software Engineering Test 2
Fall 2000

Form: A Page 3 of 9

II. Linked List Class Manipulation

Consider the linked list class and list node declarations given below:

class ItemType {
private:

int Value;
public:

ItemType();
ItemType(int newValue);
void setValue(int newValue);
int getValue() const

{return Value;}
};

class LinkNode {
private:

ItemType Data;
LinkNode* Next;

public:
LinkNode();
LinkNode(ItemType newData);
bool setNext(LinkNode* newNext);
bool setData(ItemType newData);
ItemType getData() const;
LinkNode* getNext() const;

};

LinkNode *Head, *P, *Q;
Assume that the member functions above have been implemented correctly to carry out their intended task. Given the initial
list structure:

For the next 4 questions, determine what the execution of the given code fragment would do, assuming the list structure above as
your starting point (for each question). Note � dangling references into the heap should be ignored, indicated by �??�. Choose
from the possible answers given on the following page.

5. LinkNode *Y, *X=Head;

for (int i=0; i<=0; i++) {
Y = X->getNext()->getNext();
delete X->getNext();
X->setNext(Y);
X = Y;

}

6. LinkNode *T=P;

while (T->getNext() != NULL) T = T->getNext();
Head->setNext(P->getNext());
P->setNext(T);
T->setNext(Head->getNext());

7. LinkNode *S=Head;
P->getNext()->setNext(Q->getNext());
delete Q;
S->setNext(P->getNext());
delete P;

8. LinkNode *R;
R = P->getNext()->getNext()->getNext();
R->setNext(Head->getNext());

22 Head 44 66

P Q

77 99 •88

4

6

2

8

CS 1704 Intro Data Structures and Software Engineering Test 2
Fall 2000

Form: A Page 4 of 9

II. Linked List Class Manipulation (continued)

Select from the possible answers for the 4 questions given on the previous page. Question marks (??) indicate the pointer has an
unknown, or invalid, value.

1)

2)

3)

4)

5)

6)

7)

8)

Head 44

P Q

77 99 •88

22 Head 66

P ?? Q ??

99 •88

22 Head 44

P Q

77 99 •88

22 Head 66

P ?? Q

77 99 •88

22 Head 44 66

P Q

77 99 88

22 Head 44 66

P Q

77 99 88

22 Head 44 66

P Q

77 99 88

22 Head 44 66

P Q

77 99 •88

CS 1704 Intro Data Structures and Software Engineering Test 2
Fall 2000

Form: A

III. Command Line Arguments

Consider the P2 LAMS program that provides for zero command line arguments, one or two:

LAMS <InitialMovieDataFileName>

or

LAMS <DatabaseFileName> <DatabaseActionsFileName>

For the next question, choose from the following possible answers:

1) arg
2) argc
3) argv

4) argc[0]
5) argc[1]
6) argc[2]

7) argv[0]
8) argv[1]
9) argv[2]

9. The incomplete code below checks for the existence of the optional command line arguments and calls functions to
process them. Select the answer to fill in the blank to carry out the indicated task correctly. All of the blanks are to be
filled in by the same choice.

switch(argc) {
case 0: break;
case 1: break;
case 2: //call ConvertToDatabase passing Initial Movie Data File Name

ConvertToDatabase(___________); break;
case 3: //call ReadDatabase passing Database File Name

ReadDatabase(___________);
//call ProcessActions passing Database Actions File Name
ProcessActions(arg?????????); break;

default://invalid number of CLAs
cout <<”usage: LAMS <InitialMovieDataFile>”<<endl;
cout <<” LAMS <DatabaseFile> <DatabaseActionsFile>”<<endl;

} //end switch

10. In the code above one of the switch cases can never logically occur, which one?

1) Case 1
2) Case 2

3) Case 3
4) default

5) Case 0
6) None of the above

8

The first program argument is the
program�s name, the second argument is
stored in the second argv array location.
Every C++ program
receives at least one
command line, the
program�s own name.
Page 5 of 9

CS 1704 Intro Data Structures and Software Engineering Test 2
Fall 2000

Form: A Page 6 of 9

IV. Object Manipulations

Assume the following class declaration and implementation:

class Info {
private:

double* Dinfo;
public:

Info();
Info(double Dinit);
double getDinfo()const;
void setDinfo(double Dset);
bool operator<(const Info& Info2);
~Info();

};

Info::Info() {
this->Dinfo = new double(0.0);

}

Info::Info(double Dinit) {
Dinfo = new double(Dinit);

}

double Info::getDinfo() const {
return (*Dinfo);

}

void Info::setDinfo(double Dset) {
*Dinfo = Dset;

}

bool Info::operator<
(const Info& Info2) {

return ((*Dinfo) <
*(Info2.Dinfo));

}

Info:: ~ Info() {
delete Dinfo;

}

 Given the following code:

void main() {
Info a, b(1.0);

{ // [(| Internal Block in main() |)]
Info c, d = a; //Info objects local to internal block
d.setDinfo(2.0);
c = b;
b.setDinfo(3.0);
cout << "Info of a is:" << a.getDinfo() << endl; //LINE 1
cout << "Info of c is:" << c.getDinfo() << endl; //LINE 2

} // [(| End of Internal block |)]

cout << “Info of b = ” << b.getDinfo() << endl; //LINE 3
}

11. In the above code, after execution, how many dynamically allocated double, (not bytes), memory storage locations are
not deleted, (that is, how many memory leaks occurs in the above code)?

1) 1
2) 2
3) 3

4) 4
5) 0 (all are deleted)
6) None of these

When the default
memberwise copy sets c = b;
the double memory
dynamically allocated to c by
the constructor becomes a
memory leak. The Dinfo
pointer in b becomes a
dangling pointer.

2.0

a

Code Execution Results

3.0

b

0.0

c

d

NOT
deallocated

deallocated

CS 1704 Intro Data Structures and Software Engineering Test 2
Fall 2000

Form: A

IV. Object Manipulations (continued)

Considering the previous code, for the next 3 questions, select your answers from the following:

1) 1.0
2) 2.0
3) 3.0

4) 0.0
5) Execution Error
6) None of these

12. What is output by the call a.getDinfo() in LINE 1 above?

13. What is outputby the call c.getDinfo() in LINE 2 above?

14. What is outputby the call b.getDinfo() in LINE 3 above?

15. When a copy constructor function is implemented in a class which contains dynamic data, then the copy constructor

would be automatically invoked in each of the following described execution points in a program except one. Identify at
which instance the copy constructor function would NOT be automatically executed?

1) When an object is returned by a function.

2) When an object is initialized to another object in a defi

3) When an object is passed by value.

4) When an object is assigned to an existing object of the s

5) None of the above, (all of the above situations would exe
constructor).

16. (True or False) Copy constructor and assignment operator overload functions should be

Even for classes that do not contain dynamic data.

1) True 2) False

2

3

5

See code execution
results above.

For classes that do not contain dynamic memory
default language supplied memberwise copy con
and assignment operator will usually suffice.
nition.

In this case the over-
loaded assignment
operator function would
be invoked.
Page 7 of 9

ame class.

cute the copy

 implemented for all classes.

, the
structor

CS 1704 Intro Data Structures and Software Engineering Test 2
Spring 2000

Form: A

V. Recursion

Consider the recursive function given below:

int SigmaSqr(int a, int b) {
if (a == b) return(a * a);
else return(SigmaSqr(((a+b)/2+1), b) + SigmaSqr(a, ((a+b)/2)));

}

17. What is the value returned by the call cout << SigmaSqr(2,6);

1) None of these
2) 9
3) 16

4) 25
5) 29
6) 40

7) 51
8) 80
9) 90

18. The previous function is an example of what type of recursive problem solving strategy?

1) going up (tail) recursion
2) going down (head) recursion
3) middle decomposition recursion

sition

19. The following recursive function call, Sum(IntArra

int Sum(const int Array[], int B

if (Begin >= Dim) return 0
else if (__________________)

return Array[Dim-1];
else

return (Array[Begin] + S
}

 What should the missing condition in the if statem

1) Begin != Dim
2) Array[Begin] == Array[Dim]
3) Array[Begin-1] == Array[Dim-1]

20. The previous function is an example of what type of

1) going up (tail) recursion
2) going down (head) recursion
3) middle decomposition recursion

See recursive execution
trace on following page.

The recursive code works upon the current
data (Array[Begin-1]) and then progresses
toward the end of the data.
4) edges & center decompo
5) backtracking
6) None of the above

The SigmaSqr() decomposes the work of
computing by breaking the range up into an upper
and lower part and recursively applying the
Page 8 of 9

y, 0, Size), sums an array of integers:

egin, int Dim) {

;

um(Array, Begin+1, Dim));

ent be?

4) Begin == Dim-1
5) Begin-1 == Dim-1
6) None of the above

 recursive problem solving strategy?

4) edges & center decomposition
5) backtracking
6) None of the above

The return of the Dim-1 value as a base case requires
a check for when the end of the array is reached.

CS 1704 Intro Data Structures and Software Engineering Test 2
Spring 2000

Form: A Page 9 of 9

SigmaSqr(2, 6)

Code Execution Results for # 17.

SigmaSqr(5, 6)

SigmaSqr(6, 6) SigmaSqr(5, 5)

36 25

61

SigmaSqr(2, 4)

SigmaSqr(4, 4) SigmaSqr(2, 3)

16 13

29

SigmaSqr(3, 3) SigmaSqr(2, 2)

9 4

90

	V. Recursion

