
CS 1704 Intro Data Structures and Software Engineering Test 1
Fall 2000

Form: A Page 1 of 9

READ THIS NOW!

• Print your name in the space provided below.
• Print your name and ID number on the Opscan form; be sure to code your ID number on the Opscan

form. Code Form A on the Opscan.
• Choose the single best answer for each question — some answers may be partially correct. If you mark

more than one answer, it will be counted wrong.
• Unless a question involves determining whether given C++ code is syntactically correct, assume that it

is valid. The given code has been compiled and tested, except where there are deliberate errors. Unless
a question specifically deals with compiler #include directives, you should assume the necessary
header files have been included.

• Be careful to distinguish integer values from floating point (real) values (containing a decimal point). In
questions/answers which require a distinction between integer and real values, integers will be
represented without a decimal point, whereas real values will have a decimal point, [1704 (integer),
1704.0 (real)].

• The answers you mark on the Opscan form will be considered your official answers.
• When you have completed the test, sign the pledge at the bottom of this page and turn in the test.
• This is a closed-book, closed-notes examination. No calculators or other electronic devices may be used

during this examination. You may not discuss (in any form: written, verbal or electronic) the content of
this examination with any student who has not taken it. You must return this test form when you
complete the examination. Failure to adhere to any of these restrictions is an Honor Code violation.

• There are 33 questions, equally weighted. The maximum score on this test is 100 points.

Do not start the test until instructed to do so!

Print Name (Last, First) Solution

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

 N. D. Barnette
 signature

CS 1704 Intro Data Structures and Software Engineering Test 1
Fall 2000

Form:

I. Design Representation

Consider the following partial Structure Chart diagram below:

Do not make any assumption about variables that are not shown on the chart. Given the following variables definitions:

bool BD, Zonker;
int Mike, Duke;

Which of the following incomplete function calls and function heading code below for Doonesbury()correctly models the
diagram above, (more than 1 may be a valid model:

#1 #2

#3

Doonesbury

Duke

Mike
Zonker

BD

Doonesbury(Mike, Zonker, Duke, BD);
if (Zonker)

//code under control of if

Doonesbury(Mike, Zonker, Duke, BD);
if (Mike > 0)

//code under control of if

D
i

Analysis:
 Zonker is a control output parameter so it must be passed by reference

(or be the return value from the function)
Mike is an input/output parameter, so it must be passed by reference
(and cannot be the return value from the function)
Duke is an input parameter; that means Duke does not need to be
passed by reference (and so should not be)
BD is a control input parameter; that means BD does not need to be
passed by reference (and so should not be)

Given those observations, the results below follow.
void Doonesbury(int& Mike, bool& Zonker,
const int& Duke, bool BD) {

if (BD)
//code under control of if
A

 (1) – correct
 (2) – incorrect

 #4

 (1) – correct
 (2) – incorrect

oonesbury(&Mike, &Zonker, Duke, BD);
f (!Zonker)

//code under control of if
void Doonesbury(int& Mike, bool Zonker,
int Duke, const bool& BD) {

if (Mike < 0)
//code under control of if
 (1) – correct
 (2) – incorrect

 Doonesbury(*Mike, *Zonker, Duke, BD);
if (Zonker == NULL)

//code under control of if
void Doonesbury(int* Mike, bool* Zonker,
int Duke, const bool& BD) {

if (!BD)
//code under control of if

void Doonesbury(int& Mike, bool& Zonker,
const int Duke, const bool BD) {

if (BD != NULL)
//code under control of if
Page 2 of 9

(1) – correct
(2) – incorrect

CS 1704 Intro Data Structures and Software Engineering Test 1
Fall 2000

Form: A Page 3 of 9

II. Separate Compilation

Consider the function call tree:

Assume that the software system is to be decomposed for compilation into three separate source files main.cpp,
Scott.cpp, and Honey.cpp, and accompanying header files of the same names. The function definitions are to be
placed in the various cpp files as shown below along with the corresponding code for the files.

FN definition locations Scott separate compilation unit

Definition for: Goes in: //Scott.h
void Scott (/* parameters */);

main() main.cpp

Joanie() main.cpp

Scott() Scott.cpp

Bernie() Scott.cpp

Honey() Honey.cpp

//Scott.cpp
#include “Scott.h”
void Bernie(/* parameters */);

void Scott (/* parameters */){
// Scott’s code

Bernie();
Joanie();

}

void Bernie (/* parameters */){
// Bernie’s code

}

Honey separate compilation unit main separate compilation unit
//Honey.h
void Honey (/* parameters */);

//main.h
/* main declarations */

//Honey.cpp
#include “Honey.h”

void Honey (/* parameters */){
// Honey’s code

Joanie (/* parameters */);

}

//main.cpp
#include “main.h”
void Joanie (/* parameters */);

void main() {

Scott (/* parameters */);
Honey (/* parameters */);

}

void Joanie (/* parameters */){
// Joanie’s code

}

main()

Scott()

Joanie()

Honey()

Bernie()

main.cpp

Scott.cpp

Honey.cpp

CS 1704 Intro Data Structures and Software Engineering Test 1
Fall 2000

Form: A

II. Separate Compilation (continued)

Assume that there are no global type and no constant declarations, (and also no global variables of course). Answer the
following questions with respect to the above compilation organization and the goals of achieving information hiding and
restricted scope:

#5 Assuming the partial code above was completed and contained no syntax errors, if only “Honey.cpp” is compiled

(not built) within Microsoft Visual C++, which of the following type of errors would occur:

(1) Compilation errors: missing Honey() prototype
(2) Compilation error: undeclared identifiers ‘Joanie’
(3) Linker Error: missing main function.
(4) No errors would be generated.

#6 Which of the following prototypes should be moved from its unit source file to the unit header file?

(1) void Honey (/* parameters */); (2) void Bernie(/* parameters */);

(3) void Scott (/* parameters */); (4) void Joanie (/* parameters */);

#7 In addition to the include directives listed above, where else should “Honey.h” be included?

(1) main.h =0.5 (2) main.cpp (3) Scott.cpp
(4) Scott.h (5) Honey.cpp (6) nowhere else

#8 In addition to the include directives listed above, where else should “Scott.h” be included?

(1) main.h =0.5 (2) main.cpp (3) Scott.cpp
(4) Honey.h (5) Honey.cpp (6) nowhere else

#9 In addition to the include directives listed above, where else should “main.h” be included?

(1) main.h (2) main.cpp (3) Honey.cpp
(4) Honey.h (5) Scott.h =0.5 (6) nowhere else

#10 In how many different files (source and header) should the #include “main.h” directive occur?

(1) 1 (2) 2 (3) 3 (4) 4
(5) 5 (6) 6 (7) 7 (8) 0

#11 The name of the linker program that is invoked automatically by the Microsoft Visual C++ development

environment is :

(1) cl
(2) ld
(3) ln
(4) link
(5) none of the above

Joanie()’s missing prototype
generates a undeclared
identifier error.

Honey()’s prototype must be
included in main so that it
can be called.

Scott()’s prototype must be
included in main so that it
can be called.

Since Honey() calls Joanie() the header for the
file containing Joanie()’s prototype must be
included in main so that it can be called.

Since Honey(), & Scott() calls Joanie() the header
for the file containing Joanie()’s prototype must be
included, also in main so that it can be compiled.

See slide 2.3 of the notes
 Page 4 of 9

CS 1704 Intro Data Structures and Software Engineering Test 1
Fall 2000

Form: A

III. Pointers

Assume the following declarations:

const int SIZE = 10;
int x = 0, y[SIZE]={0};

int* a; int* b;

Use the responses:

(1) Valid (2) Invalid

for the next 7 questions (#12 - #18). Considering each statement below independently, determine whether each statement
would compile (not link) without errors after the statement:

 a = new int[SIZE];

#12

b = &y[SIZE]; (1) Valid

#13
*a = *y; (1) Valid

#14
(*a).[SIZE-1] = (*y).[SIZE-1]; (2) Invalid a and y are NOT pointers

to structs or objects
#15

&y = &a; (2) Invalid (address operator & is NOT the
dereference * operator)

#16
y = NULL; (2) Invalid (Array pointers are constant)

#17
a = new int[SIZE]; (1) Valid

#18
y = new int[SIZE]; (2) Invalid (Array pointers are constant)

#19 Identify the logical error that occurs in the statements:

(1) Alias pointer exists (2) Dangling Reference exists
(3) Illegal memory address reference (4) Memory garbage exists
(5) Undefined pointer dereferenced (6) No logical error occurs

#20 Identify the logical error that occurs in the code fragment:

(1) Alias pointer exists (R is an alias) (2) Dangling Reference exists
(3) Illegal memory address reference (4) Memory garbage exists
(5) Undefined pointer dereferenced (6) No logical error occurs

char *p = new char[5];
strcpy(p, “CPP”);

p = &p[0];
char *q = new char[5];
strcpy(q, “BSS”);
char *r;

r = &q[0];
Page 5 of 9

CS 1704 Intro Data Structures and Software Engineering Test 1
Fall 2000

Form: A

#21 What value is printed by the code fragment below?

const int SIZE = 10;
int* a; int* b;

a = new int[SIZE]; // assume allocation starts at address 00001000

for (int i =0; i < SIZE; i++)
a[i] = i;

b = a;
b = b + SIZE;
cout << “ b = ” << *b << endl;

(1) 00001000 (2) 00001004 (3) 0

(4) 1 (5) 10 (6) None of

Consider the following code:

void resize (const int*& ray,
int then, int now);

const int SIZE = 10;
void main() {
int* a;

a = new int[SIZE];

for (int i =0; i < SIZE; i++)
a[i] = i;

resize(a, SIZE, SIZE/2);
}

//resize a
void resiz

{
int *tmp
int i;

p = tmp
for (i=0

*p =
delete [
ray = tm

}

#22 In the code above, how is the dynamic array int pointer varia

 (1) by value (2) by reference
 (4) as a const pointer (5) as a pointer to a const target
 (7) none of the above (2) and (5) == 0.5 credit

#23 Which of the following statements best describe the result/ef
main() function?

(1) the resize() function will correctly allocate a new array, co

previously allocated to a and reassign a to point to the new

(2) the call to the resize function will result in an array bound
allocated array.

(3) the call to the resize function will result in an array bound

allocated array. == 0.5 credit

(4) the call to the resize function will result in the newly alloc
initialized.

 (5) none of the above

Although the initialization of the n
access beyond the bounds of the ne
b == &a[0] and b+1== &a[1],
thus b+10 == &a[10] which is
beyond the bounds of the array,
Page 6 of 9

the above

ctual array to dimension now
e (const int*& ray, int then,

int now)

, *p, *q;

= new int[now]; //get new array
, q=ray; i<then; i++, p++, q++)
*q; //copy from ray to tmp

SIZE] ray; //deallocate ray
p; //point ray to new

ble a being passed to the resize() function?

(3) by const reference
(6) as a const pointer to a const target

fect of the call to the resize() function from the

py the old contents of a into it, remove the memory
 array.

s violation when array a is reassigned to the new

s violation when array a’s contents is copied to the new

ated array containing locations that have not been

ew (smaller) array to the old array’s contents will
w array, C/C++ does not report array bounds errors.

CS 1704 Intro Data Structures and Software Engineering Test 1
Fall 2000

Form: A Page 7 of 9

Use the responses:

(1) Valid (2) Invalid

for the next 6 questions (#24 - #29). Considering each numbered question statement in the function below separately,
determine whether each statement would be valid or invalid:

Assume the following function declaration:

void fn(char* const a) {

char s[3] = {‘a’, ‘b’, ‘c’};

const char* const b = s;

b = a; //#24: (1)Valid or (2)Invalid ?

*b = ‘b’; //#25: (1)Valid or (2)Invalid ?

const char* c = s;

c = a; //#26: (1)Valid or (2)Invalid ?

*c = ‘c’; //#27: (1)Valid or (2)Invalid ?

char* const d = a;

d = a; //#28: (1)Valid or (2)Invalid ?

*d = ‘d’; //#29: (1)Valid or (2)Invalid ?

}

b is a constant pointer to a
constant target neither it nor its
target can be re-assigned.

c is a pointer to a constant, its
target can NOT be re-assigned.

d is a constant pointer to a char
target thus its pointer value can
NOT be re-assigned.

CS 1704 Intro Data Structures and Software Engineering Test 1
Fall 2000

Form: A Page 8 of 9

IV. Class Basics

Assume the following class declaration and implementation:

class ShotGun {
private:

bool safety; //true – cannot fire
int rounds; //number of shots

public:
ShotGun(bool safe=true, int ammo=0);
void safetyon();
void safetyoff();
bool ready();
void load (int shells);
void eject(int shells);
int bullets();

};

ShotGun:: ShotGun (bool safe, int ammo)
{

safety = safe;
rounds = ammo;

}

void ShotGun:: safetyon () {
safety = true;

}

void ShotGun:: safetyoff () {
safety = false;

}

bool ShotGun:: ready () {
return((!safety) && (rounds > 0));

}

void ShotGun:: load (int shells) {
rounds += shells;

}

void ShotGun:: eject (int shells) {
rounds -= shells;

}

int ShotGun:: bullets () {
return rounds;

}

Circle the number of the best answer to each question:

#30 What does the following statement accomplish: ShotGun Browning(false, 6);

(1) define an instance of the class Browning.

(2) define an instance named Browning of a class ShotGun with unknown status.

(3) define an instance named ShotGun of a class Browning with unknown status.

(4) define an instance named ShotGun of a class Browning with 6 possible shots and ready to fire.

(5) define an instance named Browning of a class ShotGun with 6 possible shots and ready to fire.

 (6) None of these

#31 What does the following statement accomplish: ShotGun Remington;

(1) define an instance of the class Remington.

(2) define an instance named Remington of a class ShotGun with unknown status.

(3) define an instance named ShotGun of a class Remington with unknown status.

(4) define an instance named ShotGun of a class Remington with 0 possible shots and Not ready to fire.

(5) define an instance named Remington of a class ShotGun with 0 possible shots and Not ready to fire.

 (6) None of these

Invokes the parameterized
constructor for the
ShotGun class.

Invokes the default
constructor for the
ShotGun class.

CS 1704 Intro Data Structures and Software Engineering Test 1
Fall 2000

Form: A Page 9 of 9

#32 How many of the member functions in the ShotGun class should have been declared as const member functions?:

(1) 1 (2) 2 (3) 3 (4) 4
(5) 5 (6) 6 (7) 7 (8) 0

#33 How many default constructors does the above class declaration contain?

(1) 1
(2) 2

(3) 3

(4) 4

(5) 0

Only the member functions
ready() and bullets do not
change data members.

A correct class specification, (of which
ShotGun is an example), can have only
one default constructor.

