
1

CS 1704

Introduction to Data
Structures and Software
Engineering

Sorting Terms & Definitions
Internal sorts holds all data in RAM
External sorts use Files
Ascending Order:
– Low to High

Descending Order:
– High to Low

Stable Sort
– Maintains the relative order of equal elements, in

situ.
– Desirable if list is almost sorted or if items with

equal values are to also be ordered on a
secondary field.

Comparing Sorting Algorithms

Program efficiency
– Overall program efficiency may depend

entirely upon sorting algorithm => clarity
must be sacrificed for speed.

Sorting Algorithm Analysis
– Performed upon the “overriding” operation

in the algorithm:
• Comparisons
• Swaps

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

Bubble Sort

Bubble elements down (up) to their
location in the sorted order.

for (i = 0; i < n-1; i++)
for (j = n-1; j > i; j--)

if (A[j] < A[j-1])
swap(A[j],A[j-1]);

Bubble Sort: Graphical Trace Bubble Sort: Analysis

if-statement:
– 1 compare and in worst case, 1 swap

inner for-loop:
– body executed for j-values from n-1 down to i+1,

or n-i-1 times
– each execution of body involves 1 compare and

up to 1 swap
outer for-loop:
– body executed for i-values from 0 up to n-2 (or 1 to

n-1)
– each execution of body involves n-i-1 compares

and up to n-i-1 swaps

2

Bubble Sort: Analysis

So in the worst case, the number of
swaps equals the number of compares,
and is:

Which is clearly O(n2).

())1()2)(1(
2
1)1(1

1

1
−−−−−−=−−∑

−

=

nnnnnin
n

i

Selection Sort

• In the ith pass, select the element with the
lowest value among A[i], ..., A[n-1], & swap it
with A[i].

• Results after i passes: the i lowest elements
will occupy A[0], ..., A[i] in sorted order.

for (Begin = 0; Begin < Size - 1; Begin++) {
SmallSoFar = Begin;
for (Check = Begin + 1; Check < Size; Check++) {

if (aList[Check] < aList[SmallSoFar])
SmallSoFar = Check;

}
swap(aList[Begin], aList[SmallSoFar]);

}

Selection Sort: Graphical Trace Selection Sort: Analysis

if-statement: 1 compare
inner for-loop:
– body executed n-i-1 times (i is Begin and n is

Size)
– each execution of body involves 1 compare and

no swaps
outer for-loop:
– body executed n-1 times
– each execution of body involves n-i-1 compares

and 1 swap

Selection Sort: Analysis

So in the worst case, the number of swaps is
n – 1, and the number of compares is:

which is clearly O(n2) and the same as for
BubbleSort.

())1()2)(1(
2
1)1(1

1

1
−−−−−−=−−∑

−

=

nnnnnin
n

i

Duplex Selection Sort

Min / Max Sorting
– algorithm passes thru the array locating the

min and max elements in the array A[i], ...,
A[n-i+1]. Swapping the min with A[i] and
the max with A[n-i+1].

– Results after the ith pass: the elements
A[1], ..., A[i] and A[n-i+1], ..., A[n] are in
sorted order.

– What would be the Big Oh?

3

Duplex Selection Sort Analysis

Without going through the figures,
– Duplex Selection Sort is another O(N^2)

sort algorithm.
– But, the coefficient IS better than for

BubbleSort!

Sorting Thoughts

Comparison-Based Sorting
– Algorithms which compare element

values to each other
– What is the minimum number of

comparisons, required to sort N
elements using a comparison-based
sort?

Is a Queue a type of sorting?

Comparison Tree

Binary tree (hierarchical graph < 2
branches per node) which contains
comparisons between 2 elements at
each non-leaf node & containing
element orderings at its leaf (terminal)
nodes.

Comparison Tree for 3 Elements

a < b

b < c

Order
a < b < c

a < c

Order
a < c < b

Order
c < a < b

a < c

Order
b < a < c b < c

Order
b < c < a

Order
c < b < a

T F

T F T F

T F T F

Depth
0

1

2

3

Comparison Tree Continued

– Any of the 3 elements (a, b, c) could be first in the
final order. Thus there are 3 distinct ways the final
sorted order could start.

– After choosing the first element, there are two
possible selections for the next sorted element.

– After choosing the first two elements there is only
1 remaining selection for the last element.

– Therefore selecting the first element one of 3
ways, the second element one of 2 ways and the
last element 1 way, there are 6 possible final
sorted orderings = 3 * 2 * 1 = 3!

Order Tree for sorting N

Any of the N elements (1 ... N) could be first in the
final order. Thus there are N distinct ways the final
sorted order could start.
After choosing the first element, there are N-1
possible selections for the next sorted element.
After choosing the first two elements there N-2
possible selections for the next sorted element, etc.
Therefore selecting the first element one of N ways,
the second element one of N-1 ways, etc., there are
N * (N-1) * (N-2) * . . . * 2 * 1 possible final sorted
orderings which = N!

4

Comparisons for Sorting N

The comparison tree for N elements must have N!
leaf nodes. Each leaf node contains one of the
possible orderings of all of the N elements.
Consider the previous comparison tree for 3
elements, all of the leaf nodes are at a depth of
either 2 or 3 >  log23! 
The comparison tree for 4 elements must contain
4!=24 leaf nodes, all of which would be at a depth of
either 4 or 5 > log24!
The “floor”   symbol means the largest whole
number that is less than the number

Depth vs. N

0

1

2

3

4

5

Depth:

General Comparison Trees

The comparison tree for N elements
must contain N! leaf nodes, all of which
would be at a depth > log2N!
The minimal number of comparisons
required to sort a specific (unsorted)
ordering is equal to the depth from the
root to a leaf.

Minimal # of Comparisons

N log N

Since the depth of all leaf nodes is > log2N!
in a comparison tree, the minimal number of
comparisons to sort a specific initial ordering
of N elements is > log2N!
Stirling’s Approximation for log2(N!) can be
used to determine a lower bound for log2(N!)
which is O(N log N)
No comparison based sorting algorithm can
sort faster than
– O(N log N)

Quick Sort

Select an item in the array as the pivot
key.
Divide the array into two partitions: a left
partition containing elements < the pivot
key and a right partition containing
elements > the pivot key.

5

Quicksort Trace

Start with i and j pointing to the first & last elements,
respectively.

Select the pivot (3): [3 1 4 1 5 9 2 6 5 8]
L R

Swap the end elements, then move L, R inwards.
[8 1 4 1 5 9 2 6 5 3]
L R

Swap, and repeat: [2 1 4 1 5 9 8 6 5 3]
L R

Swap, and repeat: [2 1 1 | 4 5 9 8 6 5 3]
R L

Quicksort

int Partition(Item A[], int start, int end,
const Item& pivot){

int L = start, R = end;
do {

swap(A[L] , A[R]);
while (A[L] < pivot) L++;
while (!(A[R] < pivot)) R--; //< overloaded

} while (R > L);
return (L);

}

Pivoting

Partitioning test requires at least 1 key with a
value < that of the pivot, and 1 value > to that
of the pivot, to execute correctly.
Therefore, pick the greater of the first two
distinct values (if any).
– OR Try and pick a pivot such that the list is split

into equal size sublists, (a speedup that should cut
the number of partition steps to about 2/3 that of
picking the first element for the pivot).

• Choose the middle (median) of the first 3 elements.
• Pick k elements at random from the list, sort them & use

the median.

Find Pivot

const int MISSING = -1;
int FindPivot(const Item A[], int start, int end) {

Item firstkey; //value of first key found
int pivot; //pivot index
int k; //run right looking for other key
firstkey = A[start];
//return -1 if different keys are not found
pivot = MISSING;
k = start + 1;
//scan for different key
while ((k <= end) && (pivot == MISSING))

if (firstkey < A[k]) //select key
pivot = k;

else if (A[k] < firstkey)
pivot = start;

else
k++;

return pivot;
}

Quick Sort Function

const int MISSING = -1;
void QuickSort(Item A[], int start, int end) {

// sort the array from start ... end
Item pivotKey;
int pivotIndex;
int k; //index of partition >= pivot
pivotIndex = FindPivot(A, start, end);
if (pivotIndex != MISSING) {

pivotKey = A[pivotIndex];
k = Partition(A, start, end, pivotKey);
QuickSort(A, start, k-1);
QuickSort(A, k, end);

}
}

Average Case
quicksort is based upon the intuition that
swaps, (moves), should be performed over
large distances to be most effective.
quicksort's average running time is faster
than any currently known O(n log2n) internal
sorting algorithms (by a constant factor).
For very small n (e.g., n < 16) a simple O(n2)
algorithm is actually faster than Quicksort.
– Optimization: When the sublist is small, use

another sorting algorithm, (selection).

6

Worst Case

In the worst case, every partition might split
the list of size j - i + 1 into a list with 1
element, and a list with j - i elements.
A partition is split into sublists of size 1 & j-i
when one of the first two items in the sublist is
the largest item in the sublist which is chosen
by findpivot.
When will this worst case partitioning always
occur?
O(N^2)

Iterative Version is Posted

Iterative implementation requires using a
stack to store the partition bounds remaining
to be sorted.

At the end of any given partition, only one
subpartition need be stacked.

struct StackItem {
int low, hi;

};

Other Quicksort Optimizations

All function calls should be replaced by inline code to
avoid function overhead.
Current partition bounds should be held in register
variables.
With large data records, swap pointers instead of
copying records
– We’re accepting the cost of additional pointer dereferences

to avoid the cost of some data copying.
Carefully investigate the average data arrangement
in order to select the optimal sorting algorithm.
– For example, to identify special cases within Quicksort

Special Case: Mapping

Better than N log N
– If sort key (member) consists of

consecutive (unique) N integers they can
be easily mapped onto the range 0 .. N-1 &
sorted.

– If the N elements are initially in array A,
then: Item A[], B[];

for (int i = 0; i < N; i++)
B[A[i].GetKey() % N] = A[i];

Mapping

takes O(n) time.
Requires exactly 1 record with each key
value!
Of course, this is a very special
circumstance…
Special case of Bin Sorting. (If integers are
not consecutive, but within a reasonable
range, bit flags can be used to denote empty
array slots.)

Bin Sorting

Assume we need to sort an array of integers
in the range 0-99:
Assume we have an array of 10 linked lists
(bins) for storage.
First make a pass through the list of integers,
and place each into the bin that matches its
1’s digit.
Then, make a second pass, taking each bin
in order, and place each integer into the bin
that matches its 2’s digit, etc.

7

Bin Sorting

Now if you just read the bins, in order, the
elements will appear in ascending order.
– Assuming no Bin with > 1 element
– Otherwise, use another sort technique to sort bins

Each pass takes O(N) work, and the number
of passes is just the number of digits in the
largest integer in the original list.
That beats QuickSort, but only in a somewhat
special case. (When each bin has 1 element)
Binsort Implementation will be posted online.

