Sorting Terms \& Definitions

- Internal sorts holds all data in RAM
- External sorts use Files
- Ascending Order:
- Low to High
- Descending Order:
- High to Low
- Stable Sort
- Maintains the relative order of equal elements, in situ.
- Desirable if list is almost sorted or if items with equal values are to also be ordered on a secondary field.

Comparing Sorting Algorithms

- Program efficiency
- Overall program efficiency may depend entirely upon sorting algorithm => clarity must be sacrificed for speed.
- Sorting Algorithm Analysis
- Performed upon the "overriding" operation in the algorithm:
- Comparisons void swap (int\& x, int\& y) \{
- Swaps int tmp $=\mathrm{x}$;
$\mathrm{x}=\mathrm{y}$;
$\mathrm{y}=\mathrm{tmp}$;

Bubble Sort

$■$ Bubble elements down (up) to their location in the sorted order.

```
|for (i= 0; i< < n-1; i++)
```


Bubble Sort: Analysis

- if-statement:
- 1 compare and in worst case, 1 swap
- inner for-loop:
- body executed for j-values from $n-1$ down to $i+1$, or n-i-1 times
- each execution of body involves 1 compare and up to 1 swap
- outer for-loop:
- body executed for i -values from 0 up to $\mathrm{n}-2$ (or 1 to $\mathrm{n}-1$)
- each execution of body involves $\mathrm{n}-\mathrm{i}-1$ compares and up to $\mathrm{n}-\mathrm{i}-1$ swaps

Bubble Sort: Analysis

$■$ So in the worst case, the number of swaps equals the number of compares, and is:
$\sum_{i=1}^{n-1}(n-i-1)=n(n-1)-\frac{1}{2}(n-1)(n-2)-(n-1)$

- Which is clearly $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Selection Sort: Graphical Trace

Selection Sort

- In the $i^{\text {th }}$ pass, select the element with the lowest value among $A[i], \ldots, A[n-1]$, \& swap it with $A[i]$.
- Results after i passes: the i lowest elements will occupy $A[0], \ldots, A[i]$ in sorted order.
for (Begin $=0$; Begin < Size - 1; Begin++) \{
SmallSoFar = Begin;
for (Check = Begin + 1; Check < Size; Check++) \{
if (aList[Check] < aList[SmallSoFar]) SmallSoFar = Check;
\}
swap(aList[Begin], aList[SmallSoFar]);

Selection Sort: Analysis

- if-statement: 1 compare
- inner for-loop:
- body executed $n-\mathrm{i}-1$ times (i is Begin and n is Size)
- each execution of body involves 1 compare and no swaps
- outer for-loop:
- body executed n -1 times
- each execution of body involves n-i-1 compares and 1 swap

Duplex Selection Sort

■ Min / Max Sorting

- algorithm passes thru the array locating the \min and max elements in the array $A[i], \ldots$, $A[n-i+1]$. Swapping the min with $A[i]$ and the max with $A[n-i+1]$.
- Results after the ith pass: the elements $A[1], \ldots, A[i]$ and $A[n-i+1], \ldots, A[n]$ are in sorted order.
- What would be the Big Oh?

Duplex Selection Sort Analysis

- Without going through the figures,
- Duplex Selection Sort is another O(N^2) sort algorithm.
-But, the coefficient IS better than for BubbleSort!

Sorting Thoughts

■ Comparison-Based Sorting

- Algorithms which compare element values to each other
- What is the minimum number of comparisons, required to sort N elements using a comparison-based sort?
- Is a Queue a type of sorting?

Comparison Tree Continued

- Any of the 3 elements (a, b, c) could be first in the final order. Thus there are 3 distinct ways the final sorted order could start.
- After choosing the first element, there are two possible selections for the next sorted element.
- After choosing the first two elements there is only 1 remaining selection for the last element.
- Therefore selecting the first element one of 3 ways, the second element one of 2 ways and the last element 1 way, there are 6 possible final sorted orderings $=3 * 2 * 1=3$!

Comparison Tree for 3 Elements
Depth

$$
0
$$

Comparisons for Sorting N

- The comparison tree for N elements must have \mathbf{N} ! leaf nodes. Each leaf node contains one of the possible orderings of all of the N elements.
- Consider the previous comparison tree for 3 elements, all of the leaf nodes are at a depth of either 2 or $3>\left\lfloor\log _{2} 3!\right\rfloor$
- The comparison tree for 4 elements must contain $4!=24$ leaf nodes, all of which would be at a depth of either 4 or $5>\left\lfloor\log _{2} 4!\right\rfloor$
- The "floor" \rfloor symbol means the largest whole number that is less than the number

General Comparison Trees

- The comparison tree for N elements must contain \mathbf{N} ! leaf nodes, all of which would be at a depth $>\left\lfloor\log _{2} \mathrm{~N}!\right\rfloor$
- The minimal number of comparisons required to sort a specific (unsorted) ordering is equal to the depth from the root to a leaf.

Depth vs. N

Minimal \# of Comparisons

$\mathrm{N} \log \mathrm{N}$

- Since the depth of all leaf nodes is $>\left\lfloor\log _{2} \mathbf{N}!\right\rfloor$ in a comparison tree, the minimal number of comparisons to sort a specific initial ordering of N elements is $>\left\lfloor\log _{2} \mathrm{~N}!\right\rfloor$
- Stirling's Approximation for $\log _{2}(\mathrm{~N}!)$ can be used to determine a lower bound for $\log _{2}(\mathbf{N}!)$ which is $O(N \log N)$
- No comparison based sorting algorithm can sort faster than
$-O(N \log N)$

Quick Sort

■ Select an item in the array as the pivot key.

- Divide the array into two partitions: a left partition containing elements < the pivot key and a right partition containing elements > the pivot key.

Quicksort Trace

Start with i and j pointing to the first \& last elements, respectively.
Select the pivot (3): $\left.\quad \begin{array}{llllllllll}{\left[\begin{array}{lllllll}3 & 1 & 4 & 1 & 5 & 9 & 2\end{array}\right.} & 6 & 5 & 8\end{array}\right]$
Swap the end elements, then move L, R inwards.

$$
\begin{aligned}
& {\left[\begin{array}{llllllllll}
8 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3
\end{array}\right]} \\
& {\left[\begin{array}{llllllllll}
2 & 1 & 4 & 1 & 5 & 9 & 8 & 6 & 5 & 3
\end{array}\right]} \\
& {\left[\begin{array}{lll|lllllll}
2 & 1 & 1 & 4 & 5 & 9 & 8 & 6 & 5 & 3
\end{array}\right]}
\end{aligned}
$$

Swap, and repeat:

Pivoting

- Partitioning test requires at least 1 key with a value $<$ that of the pivot, and 1 value \geq to that of the pivot, to execute correctly.
- Therefore, pick the greater of the first two distinct values (if any).
- OR Try and pick a pivot such that the list is split into equal size sublists, (a speedup that should cut the number of partition steps to about $2 / 3$ that of picking the first element for the pivot).
- Choose the middle (median) of the first 3 elements.
- Pick k elements at random from the list, sort them \& use the median.

Find Pivot

```
const int MISSING = -1;
```

int FindPivot(const Item A[], int start, int end) \{
Item firstkey; //value of first key found
int pivot; //pivot index
int k; //run right looking for other key
firstkey = A[start];
//return -1 if different keys are not found
pivot = MISSING;
$\mathrm{k}=$ start +1 ;
//scan for different key
while ($(\mathrm{k}<=$ end) \&\& (pivot $==$ MISSING))
if (firstkey <A[k]) //select key
pivot $=k$;
else if (A $[k]<$ fir
pivot $=$ start;
else
return pivot;

Quick Sort Function

```
const int MISSING = -1 
void QuickSort( Item A[], int start, int end ) {
    | sort the array from start ... end
    Item pivotKey;
    int pivotIndex;
    int k; //index of partition >= pivot
    pivotIndex = FindPivot( A, start, end );
    if (pivotIndex != MISSING) {
        pivotKey = A[pivotIndex];
        k = Partition( A, start, end, pivotKey );
        QuickSort( A, start, k-1 );
        QuickSort( A, k, end );
    }
```


Average Case

- quicksort is based upon the intuition that swaps, (moves), should be performed over large distances to be most effective.
- quicksort's average running time is faster than any currently known $\mathrm{O}\left(\mathrm{n} \log _{2} \mathrm{n}\right)$ internal sorting algorithms (by a constant factor).
- For very small n (e.g., $n \leq 16$) a simple $O\left(n^{2}\right)$ algorithm is actually faster than Quicksort.
- Optimization: When the sublist is small, use another sorting algorithm, (selection).

Worst Case

- In the worst case, every partition might split the list of size $\mathrm{j}-\mathrm{i}+1$ into a list with 1 element, and a list with j - i elements.
- A partition is split into sublists of size $1 \& j-i$ when one of the first two items in the sublist is the largest item in the sublist which is chosen by findpivot.
- When will this worst case partitioning always occur?
$-\mathrm{O}\left(\mathrm{N}^{\wedge} 2\right)$

Iterative Version is Posted

- Iterative implementation requires using a stack to store the partition bounds remaining to be sorted.

```
struct StackItem
```

\};

- At the end of any given partition, only one subpartition need be stacked.

Other Quicksort Optimizations

- All function calls should be replaced by inline code to avoid function overhead.
- Current partition bounds should be held in register variables.
- With large data records, swap pointers instead of copying records
- We're accepting the cost of additional pointer dereferences to avoid the cost of some data copying.
- Carefully investigate the average data arrangement in order to select the optimal sorting algorithm.
- For example, to identify special cases within Quicksort

Bin Sorting

- Assume we need to sort an array of integers in the range 0-99:
- Assume we have an array of 10 linked lists (bins) for storage.
- First make a pass through the list of integers, and place each into the bin that matches its 1's digit.
- Then, make a second pass, taking each bin in order, and place each integer into the bin that matches its 2's digit, etc.

Bin Sorting

- Now if you just read the bins, in order, the elements will appear in ascending order.
- Assuming no Bin with > 1 element
- Otherwise, use another sort technique to sort bins
- Each pass takes $O(N)$ work, and the number of passes is just the number of digits in the largest integer in the original list.
- That beats QuickSort, but only in a somewhat special case. (When each bin has 1 element) - Binsort Implementation will be posted online.

