CS 1704

Introduction to Data
Structures and Software
Engineering

Sorting Terms & Definitions

m Internal sorts holds all data in RAM
= External sorts use Files
= Ascending Order:
— Low to High
m Descending Order:
— High to Low
= Stable Sort

— Maintains the relative order of equal elements, in
situ.

— Desirable if list is almost sorted or if items with
equal values are to also be ordered on a
secondary field.

Comparing Sorting Algorithms

m Program efficiency
— Overall program efficiency may depend
entirely upon sorting algorithm => clarity
must be sacrificed for speed.
m Sorting Algorithm Analysis

— Performed upon the “overriding” operation
in the algorithm:

» Comparisons[ycia swap (int& x, int& y) {

. SWGpS int tmp = x;
X = y7
y = tmp;

}

Nl N ENE wE|

Bubble Sort

m Bubble elements down (up) to their
location in the sorted order.

for (i = 0; 1 < n-1; i++)
for (j = n-1; 3 > i; j--)

if (A < A)
swap (A B)

Nl N ENE wE| Nl N NN wm|

Bubble Sort: Graphical Trace

Al
VTR |

w

A

Nl N ENE wE|

Bubble Sort: Analysis

m if-statement:
— 1 compare and in worst case, 1 swap
= inner for-loop:
— body executed for j-values from n-1 down to i+1,
or n-i-1 times
— each execution of body involves 1 compare and
up to 1 swap
m outer for-loop:
— body executed for i-values from 0 up to n-2 (or 1 to
n-1)
— each execution of body involves n-i-1 compares
and up to n-i-1 swaps

TR EIIE]

Bubble Sort: Analysis

m So in the worst case, the number of
swaps equals the number of compares,
and is:

n—

(n—i—1)=n(n—l)—%(n—l)(n—2)—(n—l)

= Which is clearly O(n2).

Selection Sort

« Inthe it pass, select the element with the
lowest value among AJ[i], ..., A[n-1], & swap it
with A[i].
- » Results after i passes: the i lowest elements
will occupy A[O], ..., A[i] in sorted order.

for (Begin = 0; Begin < Size - 1; Begin++) {
SmallSoFar = Begin;
for (Check = Begin + 1; Check < Size; Check++) {
if (alList < alist)
SmallSoFar = Check;
}

swap (aList , alList)

Selection Sort: Graphical Trace

IR
w
44—‘

18

}

Selection Sort: Analysis

m if-statement: 1 compare
= inner for-loop:
— body executed n-i-1 times (i is Begin and n is
Size)
— each execution of body involves 1 compare and
no swaps

m outer for-loop:
— body executed n-1 times

— each execution of body involves n-i-1 compares
and 1 swap

Nl N ENE wE| Nl N NN wm| Nl N ErE wE

Selection Sort: Analysis

m So in the worst case, the number of swaps is
n — 1, and the number of compares is:

3
L

(n—i—l):n(n—l)—%(n—l)(n—2)—(n—l)

= which is clearly O(n2) and the same as for
BubbleSort.

T NI

Duplex Selection Sort

m Min / Max Sorting

— algorithm passes thru the array locating the
min and max elements in the array A[il, ...,
A[n-i+1]. Swapping the min with A[i] and
the max with A[n-i+1].

— Results after the ith pass: the elements
A[1], ..., Ali] and A[n-i+1], ..., A[n] are in
sorted order.

— What would be the Big Oh?

Nl N ENY e

Duplex Selection Sort Analysis

m Without going through the figures,
— Duplex Selection Sort is another O(N*2)
sort algorithm.

— But, the coefficient IS better than for
BubbleSort!

Sorting Thoughts

m Comparison-Based Sorting
— Algorithms which compare element
values to each other
— What is the minimum number of
comparisons, required to sort N
elements using a comparison-based
sort?

m Is a Queue a type of sorting?

Comparison Tree

m Binary tree (hierarchical graph < 2
branches per node) which contains
comparisons between 2 elements at
each non-leaf node & containing
element orderings at its leaf (terminal)
nodes.

TR NI

TR IR L T

Comparison Tree Continued

— Any of the 3 elements (a, b, c) could be first in the
final order. Thus there are 3 distinct ways the final
sorted order could start.

— After choosing the first element, there are two
possible selections for the next sorted element.

— After choosing the first two elements there is only
1 remaining selection for the last element.

— Therefore selecting the first element one of 3
ways, the second element one of 2 ways and the
last element 1 way, there are 6 possible final
sorted orderings =3 *2*1 =3I

Comparison Tree for 3 Elements
Depth
a<b 0
TN
- |
T F T
I VAR G
a<b<c b<a<c b<c 2
T F \ T F\
] S0 - A A

Order Tree for sorting N

= Any of the N elements (1 ... N) could be first in the
final order. Thus there are N distinct ways the final
sorted order could start.
- m After choosing the first element, there are N-1
possible selections for the next sorted element.
= After choosing the first two elements there N-2
possible selections for the next sorted element, etc.
= Therefore selecting the first element one of N ways,
the second element one of N-1 ways, etc., there are
] N *(N-1) *(N-2) * ... *2* 1 possible final sorted

orderings which = N!

Comparisons for Sorting N

m The comparison tree for N elements must have N!
leaf nodes. Each leaf node contains one of the
possible orderings of all of the N elements.

= Consider the previous comparison tree for 3
elements, all of the leaf nodes are at a depth of
either 2 or 3 > | log,3! |

= The comparison tree for 4 elements must contain
41=24 leaf nodes, all of which would be at a depth of
either 4 or 5 > log,4!]

= The “floor” | | symbol means the largest whole
number that is less than the number

General Comparison Trees

m The comparison tree for N elements
must contain N! leaf nodes, all of which
would be at a depth > [log,N! |

m The minimal number of comparisons
required to sort a specific (unsorted)
ordering is equal to the depth from the
root to a leaf.

Nl N ENE wE|

Depth vs. N

Depth: 0

>

y
)

O
O
O
O
O
O
O
O

N log N

= Since the depth of all leaf nodes is > [log,N! |
in a comparison tree, the minimal number of
comparisons to sort a specific initial ordering
of N elements is > [log,N!]

= Stirling’s Approximation for log,(N!) can be
used to determine a lower bound for log,(N!)
which is O(N log N)

= No comparison based sorting algorithm can
sort faster than

_I —O(NlogN)

B EUE N o IR L T

Nl N ENE wE|

A AV AV AVAVAWAWA
000000000000000Q0 ¢
AAAAAANANAN LA
00000000000000000000000000000000 °
Minimal # of Comparisons
/CD\
/Q\ 2)\

0
0
0

=0~
o= O
N 0
=0
o=O
==o—0
>

-t

e ©> O
-> O\
==o—0
@) -
22230
=0
SO~
==o— =

TR EIIE]

Quick Sort

m Select an item in the array as the pivot
key.

m Divide the array into two partitions: a left
partition containing elements < the pivot
key and a right partition containing
elements > the pivot key.

Quicksort Trace

Start with i and j pointing to the first & last elements,
respectively.
Select the pivot (3): 314159265 8
L R

Swap the end elements, then move L, R inwards.
B14159265 3]
L R
Swap, and repeat: 214159865 3]
L R
Swap, and repeat: 2111459865 3]

R L

Pivoting

= Partitioning test requires at least 1 key with a
value < that of the pivot, and 1 value > to that
of the pivot, to execute correctly.

m Therefore, pick the greater of the first two
distinct values (if any).

— OR Try and pick a pivot such that the list is split
into equal size sublists, (a speedup that should cut
the number of partition steps to about 2/3 that of
picking the first element for the pivot).

« Choose the middle (median) of the first 3 elements.

» Pick k elements at random from the list, sort them & use
the median.

Quicksort

int Partition(Item A/, int start, int end,
const Item& pivot) {
int L = start, R = end;

NE EENE waE Wl N Evy wE|

TR IR L T

Quick Sort Function

const int MISSING = -1;
void QuickSort(Item A/|, int start, int end) {
// sort the array from start ... end

Item pivotKey;
int pivotIndex;
int ki //index of partition >= pivo

pivotIndex = FindPivot(A, start, end);
if (pivotIndex != MISSING) {
pivotKey = A ;
k = Partition(A, start, end, pivotKey);
QuickSort(A, start, k-1);
QuickSort(A, k, end);

do {
swap (A ;A)i
while (A < pivot) L++;
while (! (A < pivot)) R--; //< overloaded
} while (R > L);
return (L);
}
Find Pivot
const int MISSING = -1;

int FindPivot (const Item A |, int start, int end) {

Item firstkey; / lue of first key found
int pivot; / t index
int k; right looking for other key
firstkey = A ;
//return -1 if different keys are not found
pivot = MISSING;
k = start + 1;
/7 n for different key
((k <= end) && (pivot == MISSING))

if (firstkey < A) //s
pivot = k;

lect key

else if (A < firstkey
pivot = start;

else
k++;

return pivot;

}

TR EIIE]

Average Case

m quicksort is based upon the intuition that
swaps, (moves), should be performed over
large distances to be most effective.

m quicksort's average running time is faster
than any currently known O(n log,n) internal
sorting algorithms (by a constant factor).

= For very small n (e.g., n < 16) a simple O(n2)
algorithm is actually faster than Quicksort.

— Optimization: When the sublist is small, use
another sorting algorithm, (selection).

Worst Case

= In the worst case, every partition might split
the list of size j - i + 1 into a list with 1
element, and a list with j - i elements.

m A partition is split into sublists of size 1 & j-i
when one of the first two items in the sublist is
the largest item in the sublist which is chosen
by findpivot.

= When will this worst case partitioning always
occur?

= O(N"2)

Other Quicksort Optimizations

= All function calls should be replaced by inline code to
avoid function overhead.

= Current partition bounds should be held in register
variables.

= With large data records, swap pointers instead of
copying records
— We're accepting the cost of additional pointer dereferences

to avoid the cost of some data copying.

= Carefully investigate the average data arrangement
in order to select the optimal sorting algorithm.
— For example, to identify special cases within Quicksort

TR NI

Iterative Version is Posted

= lterative implementation requires using a
stack to store the partition bounds remaining

to be sorted.
struct StackItem {
int low, hi;

}i

= At the end of any given partition, only one
subpartition need be stacked.

TR IR L T

Mapping

= takes O(n) time.

= Requires exactly 1 record with each key
value!

m Of course, this is a very special
circumstance...

m Special case of Bin Sorting. (If integers are
not consecutive, but within a reasonable
range, bit flags can be used to denote empty
array slots.)

T NI

Special Case: Mapping

m Better than N log N

— If sort key (member) consists of
consecutive (unique) N integers they can
be easily mapped onto the range 0 .. N-1 &
sorted.

— If the N elements are initially in array A,
then:

Item Al], B

for (int i = 0; 1 < N; i++)
B[A .GetKey() $ N = A

Nl N ENY e

Bin Sorting

= Assume we need to sort an array of integers
in the range 0-99:

= Assume we have an array of 10 linked lists
(bins) for storage.

m First make a pass through the list of integers,
and place each into the bin that matches its
1’s digit.

= Then, make a second pass, taking each bin
in order, and place each integer into the bin
that matches its 2’s digit, etc.

T

Bin Sorting

= Now if you just read the bins, in order, the
elements will appear in ascending order.
— Assuming no Bin with > 1 element
— Otherwise, use another sort technique to sort bins
m Each pass takes O(N) work, and the number
of passes is just the number of digits in the
largest integer in the original list.
m That beats QuickSort, but only in a somewhat
special case. (When each bin has 1 element)
m Binsort Implementation will be posted online.

