
1

CS 1704

Introduction to Data
Structures and Software
Engineering

Recursion Underpinnings

Every instance of a function execution (call)
creates an Activation Record, (frame) for the
function.
– Activation records hold required execution

information for functions:
• Return value for the function
• Pointer to activation record of calling function
• Return memory address, (calling instruction address)
• Parameter storage
• Local variable storage

Fn return value

Pointer previous act. rec.

Return address

Parameter storage

local storage

Fn return value

Pointer previous act. rec.

Return address

Parameter storage

local storage

Fn return value

Pointer previous act. rec.

Return address

Parameter storage

local storage

main()
activation

record

Fnx() activation
record

Fny() activation
record Storage Corruption

Infinite regression results
in a collision between the
“run-time” stack & heap
termed a “run-time” stack
overflow error.
Illegal pointer de-
references (garbage,
dangling-references)

Heap

Runtime Stack
Function activation
record management

Dynamic memory
structure management

Comparing Algorithms

Should we use Program 1 or Program 2?Should we use Program 1 or Program 2?
Is Program 1 “fast”? “Fast enough”?Is Program 1 “fast”? “Fast enough”?

P2

The empirical approach

Implement
each

candidate
Run it Time it

That could be lots
of work – also
error-prone.

Which
inputs?

What
machine/OS?

2

Running Time Implications

Processor speed differences are too great to
be used as a basis for impartial algorithm
comparisons.
Overall system load may cause inconsistent
timing results, even if the same compiler and
hardware are used.
Hardware characteristics, such as the amount
of physical memory and the speed of virtual
memory, can dominate timing results.
In any case, those factors are irrelevant to the
complexity of the algorithm.

Analytical Approach

Primitive operations
– x = 4 assignment
– ... x + 5 ... arithmetic
– if (x < y) ... comparison
– x[4] index an array
– *x dereference
– x.foo() calling a method

Others
– new/malloc memory usage

Rules for Analysis
1. We assume an arbitrary time unit.
2. Running of each of the following type of statement

takes time T(1):
1. assignment statement
2. I/O statement
3. Boolean expression evaluation
4. function return
5. arithmetic operations

3. Running time of a selection statement (if, switch) is
T(1) for the condition evaluation + the maximum of
the running times for the individual clauses in the
selection.

More Rules
4. Loop execution time is the time for the loop setup

(initialization & setup) + the sum, over the number of
times the loop is executed, of the body time + time
for the loop check and update operations.
1. Always assume that the loop executes the maximum

number of iterations possible
5. Running time of a function call is T(1) for function

setup + the time required for the execution of the
function body.

6. Running time of a sequence of statements is the
largest time of any statement in the sequence.

Summation Formulae

2
)1(

1

+
=∑

=

NNk
N

k

NCC
N

k
=∑

=1

6
)12)(1(

1

2 ++
=∑

=

NNNk
N

k

∑∑
==

=
N

k

N

k
kfCkCf

11

)()(

∑∑∑
===

±=±
N

k

N

k

N

k
kgkfkgkf

111

)()())()((

S1: factor out constant

S2: separate summed terms

S3: sum of constant

S4: sum of k S5: sum of k squared

How many foos?

for (j = 1; j <= N; ++j) {
foo();

}

ΣΣ
NN

j = 1j = 1
1 = N1 = N

3

How many foos?

for (j = 1; j <= N; ++j) {
for (k = 1; k <= M; ++k) {

foo();
}

}

ΣΣ
NN

j = 1j = 1

1 = NM1 = NMΣΣ
MM

k = 1k = 1

How many foos?

for (j = 1; j <= N; ++j) {
for (k = 1; k <= j; ++k) {

foo();
}

}

ΣΣ
NN

j = 1j = 1

1 = 1 = ΣΣ
jj

k = 1k = 1
ΣΣ
NN

j = 1j = 1

j = j =
N (N + 1)N (N + 1)

22

How many foos?

void foo(int N) {
if(N <= 2)

return;
foo(N / 2);

}

T(0) = T(1) = T(2) = 1T(0) = T(1) = T(2) = 1
T(n) T(n) = 1 + T(n/2) if n > 2= 1 + T(n/2) if n > 2

T(n)T(n) = 1 + (1 + T(n/4))= 1 + (1 + T(n/4))
= 2 + T(n/4)= 2 + T(n/4)
= 2 + (1 + T(n/8))= 2 + (1 + T(n/8))
= 3 + T(n/8)= 3 + T(n/8)
= 3 + (1 + T(n/16))= 3 + (1 + T(n/16))
= 4 + T(n/16)= 4 + T(n/16)
……
≈ log≈ log22 nn

How many foos?
for (j = 0; j < N; ++j) {

for (k = 0; k < j; ++k) {
foo();

}
}
int N=M;
for (j = 0; j < N; ++j) {

for (k = 0; k < M; ++k) {
foo();

}
}

N(N + 1)/2N(N + 1)/2

NN2

Estimate: f(n) = 3n2 + 5n + 100

0

2000

4000

6000

8000

10000

12000

14000

1 5 9 13 17 21 25 29 33 37 41 45 49

n (input size)

tim
e

f(n)
n^2
5n^2

Function Estimation

If n > 10 then n2 > 100
If n > 5 then n2 > 5n
Therefore, if n > 10 then:
f(n) = 3n2 + 5n + 100 < 3n2 + n2 + n2 = 5n2

So 5n^2 forms an “upper bound” on
f(n) if n is 10 or larger (asymptotic
bound). In other words, f(n) doesn't
grow any faster than 5n^2 “in the
long run”.

4

Big-Oh Defined
To say f(n) is O(g(n)) is to say that f(n) is
“less than or equal to” Cg(n)
More formally, Let f and g be functions
from the set of integers (or the set of real
numbers) to the set of real numbers. Then
f(x) is said to be O(g(x)), which is read as
f(x) is big-oh of g(x), if and only if there are
constants C and n0 such that

| f(x) | <= C | g(x) | whenever x > n0.
Don’t be confused …
– “f(n) is of Order g(n)”

The trick

ank + bnk-1 + … + yn + z

ank

nk

N(N + 1)/2N(N + 1)/2 + N+ N2

Some complexity classes …

O(log n)Logarithmic

O(n)Linear

O(an)Exponential

O(np)Polynomial

O(n3)Cubic

O(n2)Quadratic

O(1)Constant

Common Growth Curves

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11

n (input size)

log n
n
n log n
n^2
n^3
2^n
10^n

Does it matter?
Let n = 1,000, & 1 ms / operation.

9632 yearsn4

3,943,23410 secondsn log2 n

1.07 × 10301

years

3.17 × 1019 years

12 days
17 minutes

1 second

n = 1000, 1
ms/op

26
6

442
9,295

86,400,000

max n in one day
(first day)

n

2n

n10

n3

n2

Practical Curves
Low-order Curves

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23

n (input s ize)

log n

n

n log n

n2

5

Example

Assume:
– 1 day = 100,000 sec (10^5)

• (actually 86, 400)
– Input size n = 10^6
– A computer that executes 1,000,000 (10^6)

Instructions/sec
• C/C++ statement instructions

Comparison

Order: n2

(106)2 Instructions
1012 Instructions
1012 / 106 secs to run
106 secs to run
106 / 105 days to run
10 days to run

Order: n2

(106)2 Instructions
1012 Instructions
1012 / 106 secs to run
106 secs to run
106 / 105 days to run
10 days to run

Order: n log2 n
106 log2 106 Instructions
20 (106) = 2 (107)
2 (107) / 106 secs to run
20 sec to run

Order: n log2 n
106 log2 106 Instructions
20 (106) = 2 (107)
2 (107) / 106 secs to run
20 sec to run

Question?

Does the fact that hardware is always
becoming faster hardware mean that
algorithm complexity doesn’t really matter?
Suppose we could obtain a machine that was
capable of executing 10 times as many
instructions per second (so roughly 10 times
faster than the machine hypothesized on the
previous slides).
How long would the order n2 algorithm take
on this machine with an input size of 106?

Doing the Numbers

Impressed? You shouldn’t be. That’s still 1
(instead of 20 on the slower machine) day
versus 20 seconds if an algorithm of order n
log(n) were used.
What about 100 times faster hardware? 2.4
hours.

Order: n2

instructions: (106)2 = 1012

seconds to run: 1012 / 107 = 105

days to run: 105 / 105 = 1

Order: n2

instructions: (106)2 = 1012

seconds to run: 1012 / 107 = 105

days to run: 105 / 105 = 1

Big-Oh Defined
To say f(n) is O(g(n)) is to say that f(n) is “less
than or equal to” Cg(n)
– Where C is some constant
– f(n) = 3n^2 + n + 5
– C=5
– g(n)=n^2

Don’t be confused …
– “f(n) is of Order g(n)”

Comparison

Order: n2

(106)2 Instructions
1012 Instructions
1012 / 106 secs to run
106 secs to run
106 / 105 days to run
10 days to run

Order: n2

(106)2 Instructions
1012 Instructions
1012 / 106 secs to run
106 secs to run
106 / 105 days to run
10 days to run

Order: n log2 n
106 log2 106 Instructions
20 (106) = 2 (107)
2 (107) / 106 secs to run
20 sec to run

Order: n log2 n
106 log2 106 Instructions
20 (106) = 2 (107)
2 (107) / 106 secs to run
20 sec to run

What about n2 + c?

What about n2 + n?

What about n2 + n log2 n?

What about cn2?

6

Observations

Within complexity classes the differences
between algorithms due to constants of
proportionality, (coefficients & lesser terms),
are not significant enough to warrant
reporting
Exception: certain (high usage) helper
algorithms (e.g., sorting, searching)
– Because they are used many times
– Think about a trip to NOVA with cars that drive 60

and 70+ mph respectively, one trip vs. weekly trips

Observations

Even for moderately small input sizes,
Order n^2 algorithms will require FAR
more time than Order n log(n)
algorithms.
Large problems with Order > n log(n)
cannot practically be executed
– For n = 1000 (medium problems) n2

algorithms can still be used

General Rules

A normal loop has big Oh, O(n)
A doubly nested loop has big Oh, O(n2)
A triply nested loop has big Oh, O(n3)
You can get better times, e.g. O(log n)
– Binary Search is O(log n)
– Anytime anything is halved on each

iteration, you usually get O(log n)
Why isn’t Merge Sort O(log n)?

The trick

ank + bnk-1 + … + yn + z

ank

nk

N(N + 1)/2N(N + 1)/2 + N+ N2

Best Case Analysis

Assumes the input, data etc. are
arranged in the most advantageous
order for the algorithm, i.e. causes the
execution of the fewest number of
instructions.
– E.g., sorting - list is already sorted;

searching - desired item is located at first
accessed position.

Worst Case Analysis

Assumes the input, data etc. are
arranged in the most disadvantageous
order for the algorithm, i.e. causes the
execution of the largest number of
statements.
– E.g., sorting - list is in opposite order;

searching - desired item is located at the
last accessed position or is missing.

7

Average Case Analysis

Determines the average of the running
times over all possible permutations of
the input data.
– E.g., searching - desired item is located at

every position, for each search), or is
missing.

Big-Omega

Definition: Let f and g be functions from
the set of integers (or the set of real
numbers) to the set of real numbers.
Then f(x) is said to be Ω(g(x)) , which
is read as f(x) is big-omega of g(x), if
there are constants C and n0 such that
| f(x) | >= C | g(x) | whenever x > n0.
Finds order of “best case”

Big-Theta

Definition: Let f and g be functions from
the set of integers (or the set of real
numbers) to the set of real numbers.
Then f(x) is said to be Θ(g(x)), which is
read as f(x) is big-theta of g(x), if f(x) is
O(g(x)), and Ω(g(x)).
In other words, if Big Oh = Big Omega

Example Of Big Theta

Consider the function f(x) = 5x^3 + x^2
+ 1/(1+x^2). Without going through the
complete details on the proof, it's
apparent that f is O(x^3), since f(x) <=
7x^3 for x >= 1
f is Ω(x^3), since f(x) >= 5x^3 for x >= 1
Hence f is both O(x^3) and Ω(x^3), and
thereby f is Θ(x^3) also.

Big Oh? (Foo takes C operations)

for (j = 1; j <= N; ++j) {
foo();

}

ΣΣ
NN

j = 1j = 1
1 = N1 = N

Big Oh?

//We know N>M
for (j = 1; j <= N; ++j) {

for (k = 1; k <= M; ++k) {
foo();

}
}

ΣΣ
NN

j = 1j = 1

1 = O(NM) = O(N^2)1 = O(NM) = O(N^2)ΣΣ
MM

k = 1k = 1

8

Big Oh?

for (j = 1; j <= N; ++j) {
for (k = 1; k <= j; ++k) {

foo();
}

}

ΣΣ
NN

j = 1j = 1

1 = 1 = ΣΣ
jj

k = 1k = 1
ΣΣ
NN

j = 1j = 1

j = = O(n^2)j = = O(n^2)
N (N + 1)N (N + 1)

22

Big Oh?

int foo(int N) {
if(N <= 2) return 0;
return foo(N / 2);

}

T(0) = T(1) = T(2) = 1T(0) = T(1) = T(2) = 1
T(n) T(n) = 1 + T(n/2) if n > 2= 1 + T(n/2) if n > 2

T(n)T(n) = 1 + (1 + T(n/4))= 1 + (1 + T(n/4))
= 2 + T(n/4)= 2 + T(n/4)
= 2 + (1 + T(n/8))= 2 + (1 + T(n/8))
= 3 + T(n/8)= 3 + T(n/8)
= 3 + (1 + T(n/16))= 3 + (1 + T(n/16))
= 4 + T(n/16)= 4 + T(n/16)
……
≈ O(log≈ O(log22 n)n)

Big Oh?
for (j = 0; j < N; ++j) {

for (k = 0; k < j; ++k) {
foo();

}
}
int N=M;
for (j = 0; j < N; ++j) {

for (k = 0; k < M; ++k) {
foo();

}
}

