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CS 1704

Introduction to Data 
Structures and Software 
Engineering

Recursion Underpinnings

Every instance of a function execution (call) 
creates an Activation Record, (frame) for the 
function.
– Activation records hold required execution 

information for functions:
• Return value for the function
• Pointer to activation record of calling function
• Return memory address, (calling instruction address)
• Parameter storage
• Local variable storage

Fn return value

Pointer previous act. rec.

Return address

Parameter storage

local storage

Fn return value

Pointer previous act. rec.

Return address

Parameter storage

local storage

Fn return value

Pointer previous act. rec.

Return address

Parameter storage

local storage

main() 
activation 

record

Fnx() activation 
record

Fny() activation 
record Storage Corruption

Infinite regression results 
in a collision between the 
“run-time” stack & heap 
termed a “run-time” stack 
overflow error.
Illegal pointer de-
references (garbage, 
dangling-references)

Heap

Runtime Stack
Function activation 
record management

Dynamic memory 
structure management

Comparing Algorithms

Should we use Program 1 or Program 2?Should we use Program 1 or Program 2?
Is Program 1 “fast”?  “Fast enough”?Is Program 1 “fast”?  “Fast enough”?

P2

The empirical approach

Implement
each

candidate
Run it Time it

That could be lots 
of work – also 
error-prone.

Which 
inputs?

What 
machine/OS?
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Running Time Implications

Processor speed differences are too great to 
be used as a basis for impartial algorithm 
comparisons.
Overall system load may cause inconsistent 
timing results, even if the same compiler and 
hardware are used.
Hardware characteristics, such as the amount 
of physical memory and the speed of virtual 
memory, can dominate timing results.
In any case, those factors are irrelevant to the 
complexity of the algorithm.

Analytical Approach

Primitive operations
– x = 4 assignment
– ... x + 5 ... arithmetic
– if (x < y) ... comparison
– x[4] index an array
– *x dereference
– x.foo( )                       calling a method

Others
– new/malloc memory usage

Rules for Analysis
1. We assume an arbitrary time unit.
2. Running of each of the following type of statement 

takes time T(1):
1. assignment statement
2. I/O statement
3. Boolean expression evaluation
4. function return
5. arithmetic operations

3. Running time of a selection statement (if, switch) is 
T(1) for the condition evaluation + the maximum of 
the running times for the individual clauses in the 
selection.

More Rules
4. Loop execution time is the time for the loop setup 

(initialization & setup) + the sum, over the number of 
times the loop is executed, of the body time + time 
for the loop check and update operations.
1. Always assume that the loop executes the maximum 

number of iterations possible
5. Running time of a function call is T(1) for function 

setup + the time required for the execution of the 
function body.

6. Running time of a sequence of statements is the 
largest time of any statement in the sequence.

Summation Formulae
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S1: factor out constant

S2: separate summed terms

S3: sum of constant

S4: sum of k S5: sum of k squared

How many foos?

for (j = 1; j <= N; ++j) {
foo( );

}

ΣΣ
NN

j = 1j = 1
1   =   N1   =   N
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How many foos?

for (j = 1; j <= N; ++j) {
for (k = 1; k <= M; ++k) {

foo( );
}

}

ΣΣ
NN

j = 1j = 1

1   =   NM1   =   NMΣΣ
MM

k = 1k = 1

How many foos?

for (j = 1; j <= N; ++j) {
for (k = 1; k <= j; ++k) {

foo( );
}

}

ΣΣ
NN

j = 1j = 1

1   =   1   =   ΣΣ
jj

k = 1k = 1
ΣΣ
NN

j = 1j = 1

j   =  j   =  
N (N + 1)N (N + 1)

22

How many foos?

void foo(int N) {
if(N <= 2) 

return;
foo(N / 2);

}

T(0) = T(1) = T(2) = 1T(0) = T(1) = T(2) = 1
T(n) T(n) = 1 + T(n/2) if n > 2= 1 + T(n/2) if n > 2

T(n)T(n) = 1 + (1 + T(n/4))= 1 + (1 + T(n/4))
=    2  +     T(n/4)=    2  +     T(n/4)
= 2 + (1 + T(n/8))= 2 + (1 + T(n/8))
=    3  +     T(n/8)=    3  +     T(n/8)
= 3 + (1 + T(n/16))= 3 + (1 + T(n/16))
=    4  +     T(n/16)=    4  +     T(n/16)
……
≈ log≈ log22 nn

How many foos?
for (j = 0; j < N; ++j) {

for (k = 0; k < j; ++k) {
foo( );

}
}
int N=M;
for (j = 0; j < N; ++j) {

for (k = 0; k < M; ++k) {
foo( );

}
}

N(N + 1)/2N(N + 1)/2

NN2

Estimate: f(n) = 3n2 + 5n + 100
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Function Estimation

If n > 10 then n2 > 100
If n > 5 then n2 > 5n
Therefore, if n > 10 then:
f(n) = 3n2 + 5n + 100 < 3n2 + n2 + n2 = 5n2

So 5n^2 forms an “upper bound” on 
f(n) if n is 10 or larger (asymptotic 
bound).  In other words, f(n) doesn't 
grow any faster than 5n^2 “in the 
long run”.
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Big-Oh Defined
To say f(n) is O(g(n)) is to say that f(n) is 
“less than or equal to” Cg(n)
More formally, Let f and g be functions 
from the set of integers (or the set of real 
numbers) to the set of real numbers. Then 
f(x) is said to be O( g(x) ), which is read as 
f(x) is big-oh of g(x), if and only if there are 
constants C and n0 such that 

| f(x) | <= C | g(x) | whenever x > n0. 
Don’t be confused …
– “f(n) is of Order g(n)”

The trick

ank + bnk-1 + … + yn + z

ank

nk

N(N + 1)/2N(N + 1)/2 + N+ N2

Some complexity classes …

O(log n)Logarithmic

O(n)Linear

O(an)Exponential

O(np)Polynomial

O(n3)Cubic

O(n2)Quadratic

O(1)Constant

Common Growth Curves
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Does it matter?  
Let n = 1,000, & 1 ms / operation.
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3,943,23410 secondsn log2 n
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Practical Curves
Low-order Curves
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Example

Assume:
– 1 day = 100,000 sec (10^5)

• (actually 86, 400)
– Input size n = 10^6
– A computer that executes 1,000,000 (10^6) 

Instructions/sec
• C/C++ statement instructions

Comparison

Order: n2

(106 )2 Instructions
1012 Instructions
1012 / 106 secs to run
106 secs to run
106 / 105 days to run
10 days to run

Order: n2

(106 )2 Instructions
1012 Instructions
1012 / 106 secs to run
106 secs to run
106 / 105 days to run
10 days to run

Order: n log2 n
106 log2 106 Instructions
20 ( 106 ) = 2 ( 107 )
2 ( 107 ) / 106 secs to run
20 sec to run

Order: n log2 n
106 log2 106 Instructions
20 ( 106 ) = 2 ( 107 )
2 ( 107 ) / 106 secs to run
20 sec to run

Question?

Does the fact that hardware is always 
becoming faster hardware mean that 
algorithm complexity doesn’t really matter?
Suppose we could obtain a machine that was 
capable of executing 10 times as many 
instructions per second (so roughly 10 times 
faster than the machine hypothesized on the 
previous slides). 
How long would the order n2 algorithm take 
on this machine with an input size of 106?

Doing the Numbers

Impressed?  You shouldn’t be.  That’s still 1 
(instead of 20 on the slower machine) day 
versus 20 seconds if an algorithm of order n 
log(n) were used. 
What about 100 times faster hardware?  2.4 
hours.

Order: n2

# instructions: (106 )2 = 1012

# seconds to run: 1012 / 107 = 105

# days to run: 105 / 105 = 1

Order: n2

# instructions: (106 )2 = 1012

# seconds to run: 1012 / 107 = 105

# days to run: 105 / 105 = 1

Big-Oh Defined
To say f(n) is O(g(n)) is to say that f(n) is “less 
than or equal to” Cg(n)
– Where C is some constant
– f(n) = 3n^2 + n + 5
– C=5
– g(n)=n^2

Don’t be confused …
– “f(n) is of Order g(n)”

Comparison

Order: n2

(106 )2 Instructions
1012 Instructions
1012 / 106 secs to run
106 secs to run
106 / 105 days to run
10 days to run

Order: n2

(106 )2 Instructions
1012 Instructions
1012 / 106 secs to run
106 secs to run
106 / 105 days to run
10 days to run

Order: n log2 n
106 log2 106 Instructions
20 ( 106 ) = 2 ( 107 )
2 ( 107 ) / 106 secs to run
20 sec to run

Order: n log2 n
106 log2 106 Instructions
20 ( 106 ) = 2 ( 107 )
2 ( 107 ) / 106 secs to run
20 sec to run

What about n2 + c?

What about n2 + n?

What about n2 + n log2 n?

What about cn2?
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Observations

Within complexity classes the differences 
between algorithms due to constants of 
proportionality, (coefficients & lesser terms), 
are not significant enough to warrant 
reporting
Exception: certain (high usage) helper 
algorithms (e.g., sorting, searching)
– Because they are used many times
– Think about a trip to NOVA with cars that drive 60 

and 70+ mph respectively, one trip vs. weekly trips

Observations

Even for moderately small input sizes, 
Order n^2 algorithms will require FAR 
more time than Order n log(n) 
algorithms.
Large problems with Order > n log(n) 
cannot practically be executed
– For n = 1000 (medium problems) n2

algorithms can still be used

General Rules

A normal loop has big Oh, O(n)
A doubly nested loop has big Oh, O(n2)
A triply nested loop has big Oh, O(n3)
You can get better times, e.g. O(log n)
– Binary Search is O(log n)
– Anytime anything is halved on each 

iteration, you usually get O(log n)
Why isn’t Merge Sort  O(log n)?

The trick

ank + bnk-1 + … + yn + z

ank

nk

N(N + 1)/2N(N + 1)/2 + N+ N2

Best Case Analysis

Assumes the input, data etc. are 
arranged in the most advantageous 
order for the algorithm, i.e. causes the 
execution of the fewest number of 
instructions.
– E.g., sorting - list is already sorted; 

searching - desired item is located at first 
accessed position. 

Worst Case Analysis

Assumes the input, data etc. are 
arranged in the most disadvantageous 
order for the algorithm, i.e. causes the 
execution of the largest number of 
statements.
– E.g., sorting - list is in opposite order; 

searching - desired item is located at the 
last accessed position or is missing.
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Average Case Analysis

Determines the average of the running 
times over all possible permutations of 
the input data.
– E.g., searching - desired item is located at 

every position, for each search), or is 
missing.

Big-Omega

Definition: Let f and g be functions from 
the set of integers (or the set of real 
numbers) to the set of real numbers. 
Then f(x) is said to be Ω( g(x) ) , which 
is read as f(x) is big-omega of g(x), if 
there are constants C and n0 such that 
| f(x) | >= C | g(x) | whenever x > n0.
Finds order of “best case”

Big-Theta

Definition: Let f and g be functions from 
the set of integers (or the set of real 
numbers) to the set of real numbers. 
Then f(x) is said to be Θ( g(x) ), which is 
read as f(x) is big-theta of g(x), if f(x) is 
O( g(x) ), and Ω( g(x) ). 
In other words, if Big Oh = Big Omega 

Example Of Big Theta

Consider the function f(x) = 5x^3 + x^2 
+ 1/(1+x^2). Without going through the 
complete details on the proof, it's 
apparent that f is O(x^3), since f(x) <= 
7x^3 for x >= 1 
f is Ω(x^3), since f(x) >= 5x^3 for x >= 1 
Hence f is both O(x^3) and Ω(x^3), and 
thereby f is Θ(x^3) also. 

Big Oh? (Foo takes C operations)

for (j = 1; j <= N; ++j) {
foo( );

}

ΣΣ
NN

j = 1j = 1
1   =   N1   =   N

Big Oh?

//We know N>M
for (j = 1; j <= N; ++j) {

for (k = 1; k <= M; ++k) {
foo( );

}
}

ΣΣ
NN

j = 1j = 1

1   =   O(NM) = O(N^2)1   =   O(NM) = O(N^2)ΣΣ
MM

k = 1k = 1
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Big Oh?

for (j = 1; j <= N; ++j) {
for (k = 1; k <= j; ++k) {

foo( );
}

}

ΣΣ
NN

j = 1j = 1

1   =   1   =   ΣΣ
jj

k = 1k = 1
ΣΣ
NN

j = 1j = 1

j   =                      =  O(n^2)j   =                      =  O(n^2)
N (N + 1)N (N + 1)

22

Big Oh?

int foo(int N) {
if(N <= 2) return 0;
return foo(N / 2);

}

T(0) = T(1) = T(2) = 1T(0) = T(1) = T(2) = 1
T(n) T(n) = 1 + T(n/2) if n > 2= 1 + T(n/2) if n > 2

T(n)T(n) = 1 + (1 + T(n/4))= 1 + (1 + T(n/4))
=    2  +     T(n/4)=    2  +     T(n/4)
= 2 + (1 + T(n/8))= 2 + (1 + T(n/8))
=    3  +     T(n/8)=    3  +     T(n/8)
= 3 + (1 + T(n/16))= 3 + (1 + T(n/16))
=    4  +     T(n/16)=    4  +     T(n/16)
……
≈ O(log≈ O(log22 n)n)

Big Oh?
for (j = 0; j < N; ++j) {

for (k = 0; k < j; ++k) {
foo( );

}
}
int N=M;
for (j = 0; j < N; ++j) {

for (k = 0; k < M; ++k) {
foo( );

}
}


