
1

CS 1704

Introduction to Data
Structures and Software
Engineering

Stacks

Restricted list structure
– Dynamic LIFO Storage Structure

† Size and Contents can change during execution of
program

† Last In First Out (lifo)

Elements are added to the top and removed
from the top
How do you implement one?
– What about a dynamic array?
– What about a linked list?
– What about a string?

Stack Implementation

Has two main operations
– Push

• adds element to top of stack
– Pop

• removes elements from top of stack
– Both should return a bool to indicate

success or failure

Top

BottomI1

I2

I3

OutIn

More Ideas

Also nice to include some maintenance
functions:
– Stack () ;

† set Stack to be empty
– bool Empty () const;

† check if stack is empty
– bool Full () const;

† check if stack is full
– bool Push (const ItemType& item) ;

† insert item onto the stack
– Item Pop () ;

† remove & return the item at the top of the
stack

More Ideas

Some implementations define:
– Item Top() ;

• Returns top item in the stack, but does not
remove it.

– Pop() ;
• In this case removes the top item in the stack,

but does not return it.

Implementations

String Representation
– Empty Stack == Empty String
– Top of Stack == End of String
– String operations are used to implement stack operations

† Enforces stack behavior on strings of type stack
† Maps one data structure, (stack), onto another, (string)

Linked-List Representation
– top is fixed at the head (tail) of the list
– Push & Pop operate only on the head (tail) of the

list

2

String Implementation

#include <string>
typedef char Item;

class Stack {
private:

string stk;
public:

bool Empty() const;
bool Full () const;
bool Push (const Item& Item);
Item Pop() ;

};

String Implementation

#include "Stack.h"
using namespace std;

bool Stack::Empty() const {
return (stk.empty());

}

bool Stack::Full() const {
return(stk.length() == stk.max_size()
);

}

String Implementation

bool Stack::Push(const Item& Item) {
stk = stk + Item;
return (Full());

}

Item Stack::Pop() {
Item temp;
int i;

i = stk.length();
temp = stk.at(i-1);
stk.erase(i-1, 1);
return(temp);

}

String Implementation

//if top() was to be implemented:

Item Stack::Top() {
Item temp;
int i;

i = stk.length();
temp = stk.at(i-1);
return(temp);

}

Linked List Implementation

#include "LinkList.h"
//typedef arbitrary Itemtype;
#include "Item.h"

class Stack {
private:

LinkList stk;

public:
Stack();
bool Empty() const;
bool Full () const;
bool Push (const Itemtype& Item);
Item Pop() ;

};

Queues
Restricted (two-tailed) list structure
Dynamic FIFO Storage Structure
– Size and Contents can change during execution of

program
– First in First Out
– Elements are inserted (enqueue) into the rear and

retrieved (dequeue) from front.
Think of waiting in line to check-out of a store.

In OutI1I2I3

FrontRear

3

Queue Implementation

Queue () ;
† set queue to be empty
bool Empty () ;
† check if queue is empty
bool Full () ;
† check if queue is full
Enqueue (const Item& item) ;
† Insert item into the queue
Item Dequeue () ;
† Remove & return the item

at the front of the queue

What about a Front()?

Some implementations define:
– Item Front() ;

Returns first item in the queue, but does
not remove it.
– bool Dequeue() ;

In this case removes the first item in the
queue, but does not return it.
What about a Clear()?

Implementation Details

Linear Array: not as easy to implement
as it seems.
– Front or Rear must be fixed at one end of

the array
• Enqueing or Dequeing requires inefficient array

shifting.
– OR if not fixed

• The head and tail move causing problems.

Linear Array Solution

Make the queue circular.
– The problem now becomes when is the

queue empty and full?
Solution
– Leave one cell empty.
– The trade-off is one empty cell for

processing time.

Whaaaaaaat?

Code operations to force array indices to
‘wrap-around’

† front = front % MAXQUE ;
† rear = rear % MAXQUE ;

que.front

que.rear

MAXQUE-1
0

1

queue

States of the Queue

front and rear indicies delimit the bounds of the
queue contents
Enqueue

† Move the que.rear pointer 1 position clockwise & write the
element in that position.

Dequeue
† Return element at que.front and move que.front one position

clockwise

Count (queue size) is stored
and maintained or boolean full
status flag maintained.

4

Array Interface
const int MAXQUE = 100;
//typedef arbitrary Itemtype;
#include "Item.h"

class Queue {
private:
int Front;
int Rear;
Item Items[MAXQUE];

public:
Queue();
bool Empty();
bool Full();
void Enqueue (const Item& item);
Item Dequeue ();

};

Array Math

Distinct States
† Full Queue:

(que.rear + 1) % MAXQUE
== que.front //% MAXQUE

† Empty Queue:
(que.rear == que.front)

† One-element Queue:
(que.front + 1) % MAXQUE

== que.rear //% MAXQUE

#include "Queue.h"
Queue::Queue() {

Front = 0;
Rear = 0;

}
bool Queue::Empty () {

return (Front == Rear);
}
bool Queue::Full () {

return (((Rear+1) % MAXQUE) == Front);
}
void Queue::Enqueue(const Item& item) {

Rear = (Rear + 1) % MAXQUE;
Items[Rear] = item;

}
Item Queue::Dequeue() {

Front = (Front + 1) % MAXQUE;
return(Items[Front]);

}

Linked-List Representation

Queue is a structure containing two pointers:
† front: points to the head of the list
† rear: points to the end of the list (last node)

Enque operates upon the rear pointer, inserting after
(before) the last (first) node.
Deque operates upon the front pointer, always
removing the head (tail) of the list.
Empty queue is represented by NULL front & rear
pointers

Linked List Interface

#include "LinkList.h"
//typedef arbitrary Item
#include "Item.h"

class Queue {
private:

LinkList que;
public:

Queue(); //LinkList constructor
bool Empty();
bool Full();
void Enqueue (const Item& Item);
Item Dequeue ();

};

Drop-Out Stack (dos)

“Bottomless” Stack
– Variation of a regular stack.

† No fullstack operation (i.e. a dos can never become full).

– “Drop-Out” Stack of size N has following behavior:
Let the integers 1 , 2 ... be the first elements PUSHed onto the

stack respectively.
After the Nth integer element is PUSH’ed, integer 1 is at the

“bottom” of the stack, with 2 immediately above it.
After the N+1 integer is PUSHed, 1 Drops-Out of the bottom and

integer 2 is now at the bottom of the stack.

– Note: any element that Drops-Out of the stack never
reenters the stack automatically from the bottom due to
POPs being performed.

5

DOS

dos
max size = 5

DOS.push()

drop-out

Efficiency

Implementation

“Double-Ended” Queue

variation of a regular queue.
elements can be added and removed at
either the rear or front of the queue, but
nowhere else in the queue.
operations:
Deque(), Empty(), Full(), EnqRear(), EnqFront(),

DeqFront(), DeqRear()
generalization of both a stack and a queue.

Circular Array

0
1

2

MaxDeQue-1

DeQueue.front

DeQueue.rear

EnqFront
Deqfront

DeqRear

EnqRear

•

•

•
•

•
• • •

•

New-Style Header Files

In general, old-style C++
header files are replaced by
new-style headers whose
names omit the “.h” suffix.
Some headers, such as math.h,
were inherited from the C
language. In those cases, the
new-style headers prefix a “c” to
the name and omit the “.h”.

Old style:

iostream.h

fstream.h

string.h

math.h

stdlib.h

New style:

iostream

fstream

string

cmath

cstdlib

Some differences

iostream.h

standard stream stuff

iostream

same type names, but some
subtle differences in
implementation

fstream.h

file stream stuff;

includes iostream.h

fstream

file stream stuff; does

NOT include iostream.h

string.h

C-style char arrays

string

string object library

6

Observations

The new-style headers offer enhanced
functionality.
There are some S/E advantages incorporated
into the new-style implementation.
Therefore, use the new-style approach
whenever possible.
Never, ever, mix old- and new-style headers
in the same compilation unit. If possible don’t
mix them in the same program.

Namespaces

namespace FooSpace {

typedef struct {
string Message;
int Target;

} Foo;
const int MaxFoo = 1000;
int numFoo;
Foo List[MaxFoo];

};

A namespace is a scope with a name attached. That is:

Using namespaces
. . .
cout <<
FooSpace::numFoo;

. . .

using namespace FooSpace;
cout << numFoo;
cout << List[0].Message;

using FooSpace::numFoo;
cout << numFoo;
cout << List[0].Message;

Error. List[] is not declared in
the present scope.

using namespace std;

The new-style C++
header files are all
wrapped in a single
namespace, called std:
Namespaces may be
composed; that is, two
with the same name are
automatically
concatenated by the
preprocessor.

// foobar
#ifndef FOOBAR
#define FOOBAR
namespace std {

// declarations
}
#endif

Benefits

Modulization
You could wrap all those tempting
globals into a namespace to protect
them
global scope is itself considered a
namespace, with no name

int Stupid = 0;
void F() {

int Stupid = 10;
cout << Stupid;
// local
cout << ::Stupid;
// global

}

