
1

CS 1704

Introduction to Data 
Structures and Software 
Engineering

Constructors and Const

Remember some methods are declared 
constant?

void getObjectID() const;
void CreateAndDestroy::getObjectID() const
{

return objectID;
}

The “constness” of an object begins as soon 
as the constructor finishes its job and ends 
when the destructor is called
How do we initialize constant member data?

Example

class MyClass {
public:

MyClass(int initial_x);
private:

const int x; //how do we initialize this?
}

Const Problem

How do you initialize const data when const 
data has to be initialized when it is declared?
Through the use of a member initializer list
MyClass::MyClass(int initial_x) :  x(initial_x)
{

//whatever else the constructor needs to do
//we can’t do an  “x=initial_x” because x is const!

}

Const Problem Solved

Can use this to initialize all member 
data
Must use this to initialize const member 
data

Reference Variable

The ampersand ‘&’ character is used for 
reference variable declarations:

– Reference variables do NOT use the address and 
dereference operators (& *).

– Compiler dereferences reference variables 
transparently.

int&  iptr;
float &fptr1, &fptr2;

Reference variables 
are aliases for 
variables.

Reference variables 
are aliases for 
variables.



2

Reference Variable

Reference variables are constant addresses, 
assignment can 
only occur as initialization or as parameter 
passing, reassignment is NOT allowed.
Frees programmers from explicitly 
dereferencing accessing, 
(in the same way nonpointer variables do).
‘Cleans up the syntax’ for standard C
arguments and parameters.

Reference Returns

Return by Value

– The function does not actually return b, it 
returns a copy of b.

int f(int& a) {
int b = a;
// . . .
return( b );

}//f

Reference Returns

Functions can return references:

– The code above contains a subtle trap. The 
function returns a reference to a variable b which 
will no longer exist when the function exits and 
goes out of scope. Returning a reference to an 
already referenced variable is acceptable, 
(although most likely unnecessary and confusing).

int& f(int& a) {
int b = a;
// . . .
return( b );

}//f  *** bad ***

Good compilers will issue 
a warning for returning a 
reference to a local 
variable.

Watch Out

Returning a reference (like a pointer) to 
a private member
– Will not work!  Why?

This would break the information hiding, 
so the compiler will not allow it!
E.g.: class MC {

public:
int& getX() {return &x;}

private:
int x;

}

Const Pointers as Function 
Parameters

Four ways to use const with pointers and 
functions
– Non-constant pointer to non-constant data

• Data can be manipulated and pointer can change
– Non-constant pointer to constant data

• Pointer can be made to point to something else, 
data cannot change

– Constant pointer to non-constant data
• Data can be changed, pointer cannot

– Constant pointer to constant data
• Nothing can change

– ☺ Simple, Right?

Examples

//pointer to a const char
void printCharacters (const char *sPtr )
{

for ( ; *sPtr != ‘\0’; sPtr++ )
cout << *sPtr;

} //The pointer is changing; data is not



3

More Examples

int main()
{  //Can you see the error?

int x, y;
int * const ptr = x; //const pointer to an int
*ptr = 7; 
ptr = &y; 
return 0;

}

One more example

int main()
{ //Are there errors?

int x=5,y;
const int * const ptr = &x; //const pointer to a

// const int
*ptr = 7;
ptr = &y;
return 0;

}

Pointer Expressions and Pointer 
Arithmetic

You can:
– Increment
– Decrement
– Add
– Subtract
– Compare

+1 adds the size of the type
– E.g. if an int was 4 bites, and an int ptr pointed to 

0, ++ptr would point to bite number 4

void *

void * is a pointer to any type of data
It should be avoided unless necessary
A pointer of any type can be cast to a 
void *
You cannot dereference a void *
You must first cast the void * to the type 
of pointer it is, then dereference

Array Pointer

Assume we have int b[6] and int * bPtr
We can do this:
– bPtr = b;  //an array is a pointer!
– bPtr = &b[ 0 ]; //array points to first element

Also, for example b[3] is:
– *( bPtr + 3 )
– *( b + 3 )

What does “cout << *b;” print?

Arrays of Pointers

Consider the following declartion:
– const char *suit[4] = { “Hearts”, “Diamonds”

“Clubs”, “Spades” };
– How does this compare with a two 

dimensional array that would normally 
have to hold these strings?

• What about in memory?



4

Dynamic Data ☺

The programmer can if they wish create 
an object dynamically.
Meaning rather than using memory 
given to the program when it begins and 
resides in its memory space
You can get it from the system heap.
The new keyword!

Syntax

You use the command new
Time *timePtr;
timePtr = new Time; //Which constructor?
timePtr2= new Time(1,2,1980);
new returns a pointer to the memory 
allocated for the newly created object of type 
Time.
#include <new> to use the new standard

More examples

You can do this for any built-in or user-
defined type
int *xPtr = new int;
You can also create an array this way
int xArrayPtr = new int [ 10 ];
This creates an array of size ten and 
you access it through xArrayPtr
cout << xArrayPtr[1];

Freeing memory

To release the memory pointed to by 
your pointer you use the command 
delete
delete xPtr;
delete [ ] xPtr;
Forgetting the [ ] on an array only 
releases the memory for the first 
location in the array!!!

Pointers to structures:
const int f3size = 20;

struct rectype {
int field1;
float field2;
char field3[f3size];

};

typedef rectype *recPtr;

rectype rec1 = {1, 3.1415f, "pi"};
recPtr r1ptr;

r1ptr = &rec1;
cout << r1ptr->field1 

<< r1ptr->field2 
<< r1ptr->field3;

Logical Expressions for Pointers

NULL tests:

Equivalence Tests:

if (!person) //true if (person == NULL)

preferred 
check

if (person == name) 
//true if pointers reference 
//the same memory address
//person and name are pointers

pointer 
types 
must be 
identical

pointer 
types 
must be 
identical



5

Deallocation
Failure to explicitly delete a 
dynamic variable will result in that 
memory NOT being returned to the 
system, even if the pointer to it 
goes out of scope.

• This is called a “memory leak” and is 
evidence of poor program 
implementation.

• If large dynamic structures are used (or 
lots of little ones), a memory leak can 
result in depletion of available memory.

“Growing” an array

int* newArray = new int[newSize];

// copy contents of old array into new one
for (int Idx = 0; Idx < oldCapacity; Idx++)

newArray[Idx] = Scores[Idx];

// delete old array
delete [] Scores;

// retarget old array pointer to new array
Scores = newArray;

// clean up alias
newArray = NULL;//WHY IS THIS IMPORTANT?

nothrow

An invocation of operator new will fail if the 
heap does not contain enough free memory 
to grant the request.
Traditionally, the value NULL has been 
returned in that situation.  However, the C++ 
Standard changes the required behavior.  By 
the Standard, when an invocation of new 
fails, the value returned may or may not be 
NULL; what is required is that an exception 
be thrown.  We do not cover catching and 
responding to exceptions in this course.

More nothrow

the C++ Standard provides a way to force a 
NULL return instead of an exception throw:

What should you always do after declaring a 
new object?
CHECK TO SEE IF IT WAS NULL!

const int Size = 20;
int* myList = new(nothrow) int[Size];

// to turn off nothrow warning
#pragama warning (disable:4291)

Pointers Passed

Passed by value
– When they do not need to change the pointer 

value itself
Passed by reference
– When they change what the pointer is pointing to

void add(node *&list, int val) {
//add is a pointer here

}

Dynamic Memory Problems

Garbage
– Previously allocated memory that is 

inaccessible thru any program pointers or 
structures.

– Example:

iptr1 = new
int (6);

iptr1 = NULL;

?
6

before

during

after

iptr1 *iptr1

6•



6

Dynamic Memory Problems

Aliases
– Two or more pointers referencing the same 

memory location.
– Example:

iptr1
iptr2

6iptr1 = new
int (6);

iptr2 = iptr1;

Dynamic Memory Problems

Dangling Pointers
– Pointers that reference memory locations 

previously deallocated.
– Example:

iptr1 = new int (6);
iptr2 = iptr1;
delete iptr1;

memory 
leaks

memory 
leaks

iptr1
iptr2

?
?

Dynamic Memory Problems

Shallow copy
– The pointer gets the contents of the pointer 

in the other object…
– Can you change what one of the pointer 

points to without changing what the other 
pointer points to?

Deep Copy

Solution is to provide what is know as 
a mechanism for a deep copy
When you have dynamic data inside of 
a class, you should always supply 
three methods

1. Copy Constructor
2. Assignment Operator (overloaded =)
3. Destructor

Copy Constructor

A copy constructor allows you to successfully 
create an object that is a copy of another
e.g. Student NewStudent = OldStudent;
This would invoke the copy constructor.
The copy constructor would take care of 
creating and copying the course information
Note that NewStudent didn’t exist before the 
statement above

Copy Constructor

Student::Student(const Student& 
RHS)

{
//you perform a memberwise copy
CoursePtr = new Course[size];
for ( int i=0; i<Used; i++ )
{
CoursePtr[i] = RHS.CoursePtr[i];
}

}//student has an array of courses



7

Assignment Operator

An assignment operator allows you to 
transfer a copy of an already existing 
object into an already existing object.
e.g. StudentA = StudentB;
This is a simple assignment statement.
The difference between this and a copy 
constructor is the missing StudentA
already exists

Assignment Operator
const Student& Student::operator=(const Student& RHS )
{

if ( this != &RHS )
{

delete [] this.CoursePtr;
//perform memberwise copy
CoursePtr = new Course [size];
for ( int i=0; i<Used; i++ )
{

CoursePrt[i] = RHS.CoursePtr[i];
}

return *this;
}  //Why is a “const Student&” returned?

x=y=z;//y=z must return a Student& to be assigned to x

Destructor

Student::~Student()
{
delete [] CoursePtr;

}


