
1

CS 1704

Introduction to Data 
Structures and Software 
Engineering

Constructors and Const

� Remember some methods are declared 
constant?

void getObjectID() const;
void CreateAndDestroy::getObjectID() const
{

return objectID;
}

� The “constness” of an object begins as soon 
as the constructor finishes its job and ends 
when the destructor is called

� How do we initialize constant member data?

Example

class MyClass {
public:

MyClass(int initial_x);
private:

const int x; //how do we initialize this?
}

Const Problem

� How do you initialize const data when const 
data has to be initialized when it is declared?

� Through the use of a member initializer list
MyClass::MyClass(int initial_x) :  x(initial_x)
{

//whatever else the constructor needs to do
//we can’t do an  “x=initial_x” because x is const!

}

Const Problem Solved

� Can use this to initialize all member 
data

�Must use this to initialize const member 
data

Reference Variable

� The ampersand ‘&’ character is used for 
reference variable declarations:

– Reference variables do NOT use the address and 
dereference operators (& *).

– Compiler dereferences reference variables 
transparently.

int&  iptr;
float &fptr1, &fptr2;

Reference variables 
are aliases for 
variables.

Reference variables 
are aliases for 
variables.



2

Reference Variable

� Reference variables are constant addresses, 
assignment can 
only occur as initialization or as parameter 
passing, reassignment is NOT allowed.

� Frees programmers from explicitly 
dereferencing accessing, 
(in the same way nonpointer variables do).

� ‘Cleans up the syntax’ for standard C
arguments and parameters.

Reference Returns

� Return by Value

– The function does not actually return b, it 
returns a copy of b.

int f(int& a) {
int b = a;
// . . .
return( b );

}//f

Reference Returns

� Functions can return references:

– The code above contains a subtle trap. The 
function returns a reference to a variable b which 
will no longer exist when the function exits and 
goes out of scope. Returning a reference to an 
already referenced variable is acceptable, 
(although most likely unnecessary and confusing).

int& f(int& a) {
int b = a;
// . . .
return( b );

}//f  *** bad ***

Good compilers will issue 
a warning for returning a 
reference to a local 
variable.

Watch Out

� Returning a reference (like a pointer) to 
a private member
– Will not work!  Why?

� This would break the information hiding, 
so the compiler will not allow it!

� E.g.: class MC {
public:

int& getX() {return &x;}
private:
int x;

}

Const Pointers as Function 
Parameters
� Four ways to use const with pointers and 

functions
– Non-constant pointer to non-constant data

• Data can be manipulated and pointer can change
– Non-constant pointer to constant data

• Pointer can be made to point to something else, 
data cannot change

– Constant pointer to non-constant data
• Data can be changed, pointer cannot

– Constant pointer to constant data
• Nothing can change

– ☺ Simple, Right?

Examples

//pointer to a const char
void printCharacters (const char *sPtr )
{

for ( ; *sPtr != ‘\0’; sPtr++ )
cout << *sPtr;

} //The pointer is changing; data is not



3

More Examples

int main()
{  //Can you see the error?

int x, y;
int * const ptr = x; //const pointer to an int
*ptr = 7; 
ptr = &y; 
return 0;

}

One more example

int main()
{ //Are there errors?

int x=5,y;
const int * const ptr = &x; //const pointer to a

// const int
*ptr = 7;
ptr = &y;
return 0;

}

Pointer Expressions and Pointer 
Arithmetic
� You can:

– Increment
– Decrement
– Add
– Subtract
– Compare

� +1 adds the size of the type
– E.g. if an int was 4 bites, and an int ptr pointed to 

0, ++ptr would point to bite number 4

void *

� void * is a pointer to any type of data
� It should be avoided unless necessary
� A pointer of any type can be cast to a 

void *
� You cannot dereference a void *
� You must first cast the void * to the type 

of pointer it is, then dereference

Array Pointer

� Assume we have int b[6] and int * bPtr
�We can do this:

– bPtr = b;  //an array is a pointer!
– bPtr = &b[ 0 ]; //array points to first element

� Also, for example b[3] is:
– *( bPtr + 3 )
– *( b + 3 )

�What does “cout << *b;” print?

Arrays of Pointers

� Consider the following declartion:
– const char *suit[4] = { “Hearts”, “Diamonds”

“Clubs”, “Spades” };
– How does this compare with a two 

dimensional array that would normally 
have to hold these strings?

• What about in memory?



4

Dynamic Data ☺

� The programmer can if they wish create 
an object dynamically.

�Meaning rather than using memory 
given to the program when it begins and 
resides in its memory space

� You can get it from the system heap.
� The new keyword!

Syntax

� You use the command new
� Time *timePtr;
� timePtr = new Time; //Which constructor?
� timePtr2= new Time(1,2,1980);
� new returns a pointer to the memory 

allocated for the newly created object of type 
Time.

� #include <new> to use the new standard

More examples

� You can do this for any built-in or user-
defined type

� int *xPtr = new int;
� You can also create an array this way
� int xArrayPtr = new int [ 10 ];
� This creates an array of size ten and 

you access it through xArrayPtr
� cout << xArrayPtr[1];

Freeing memory

� To release the memory pointed to by 
your pointer you use the command 
delete

� delete xPtr;
� delete [ ] xPtr;
� Forgetting the [ ] on an array only 

releases the memory for the first 
location in the array!!!

Pointers to structures:
const int f3size = 20;

struct rectype {
int field1;
float field2;
char field3[f3size];

};

typedef rectype *recPtr;

rectype rec1 = {1, 3.1415f, "pi"};
recPtr r1ptr;

r1ptr = &rec1;
cout << r1ptr->field1 

<< r1ptr->field2 
<< r1ptr->field3;

Logical Expressions for Pointers

� NULL tests:

� Equivalence Tests:

if (!person) //true if (person == NULL)

preferred 
check

if (person == name) 
//true if pointers reference 
//the same memory address
//person and name are pointers

pointer 
types 
must be 
identical

pointer 
types 
must be 
identical



5

Deallocation
�Failure to explicitly delete a 

dynamic variable will result in that 
memory NOT being returned to the 
system, even if the pointer to it 
goes out of scope.

• This is called a “memory leak” and is 
evidence of poor program 
implementation.

• If large dynamic structures are used (or 
lots of little ones), a memory leak can 
result in depletion of available memory.

“Growing” an array

int* newArray = new int[newSize];

// copy contents of old array into new one
for (int Idx = 0; Idx < oldCapacity; Idx++)

newArray[Idx] = Scores[Idx];

// delete old array
delete [] Scores;

// retarget old array pointer to new array
Scores = newArray;

// clean up alias
newArray = NULL;//WHY IS THIS IMPORTANT?

nothrow

� An invocation of operator new will fail if the 
heap does not contain enough free memory 
to grant the request.

� Traditionally, the value NULL has been 
returned in that situation.  However, the C++ 
Standard changes the required behavior.  By 
the Standard, when an invocation of new 
fails, the value returned may or may not be 
NULL; what is required is that an exception 
be thrown.  We do not cover catching and 
responding to exceptions in this course.

More nothrow

� the C++ Standard provides a way to force a 
NULL return instead of an exception throw:

� What should you always do after declaring a 
new object?

� CHECK TO SEE IF IT WAS NULL!

const int Size = 20;
int* myList = new(nothrow) int[Size];

// to turn off nothrow warning
#pragama warning (disable:4291)

Pointers Passed

� Passed by value
– When they do not need to change the pointer 

value itself
� Passed by reference

– When they change what the pointer is pointing to
� void add(node *&list, int val) {

//add is a pointer here
}

Dynamic Memory Problems

� Garbage
– Previously allocated memory that is 

inaccessible thru any program pointers or 
structures.

– Example:

iptr1 = new
int (6);

iptr1 = NULL;

?
6

before

during

after

iptr1 *iptr1

6•



6

Dynamic Memory Problems

� Aliases
– Two or more pointers referencing the same 

memory location.
– Example:

iptr1
iptr2

6iptr1 = new
int (6);

iptr2 = iptr1;

Dynamic Memory Problems

� Dangling Pointers
– Pointers that reference memory locations 

previously deallocated.
– Example:

iptr1 = new int (6);
iptr2 = iptr1;
delete iptr1;

memory 
leaks

memory 
leaks

iptr1
iptr2

?
?

Dynamic Memory Problems

� Shallow copy
– The pointer gets the contents of the pointer 

in the other object…
– Can you change what one of the pointer 

points to without changing what the other 
pointer points to?

Deep Copy

� Solution is to provide what is know as 
a mechanism for a deep copy

� When you have dynamic data inside of 
a class, you should always supply 
three methods

1. Copy Constructor
2. Assignment Operator (overloaded =)
3. Destructor

Copy Constructor

� A copy constructor allows you to successfully 
create an object that is a copy of another

� e.g. Student NewStudent = OldStudent;
� This would invoke the copy constructor.
� The copy constructor would take care of 

creating and copying the course information
� Note that NewStudent didn’t exist before the 

statement above

Copy Constructor

Student::Student(const Student& 
RHS)

{
//you perform a memberwise copy
CoursePtr = new Course[size];
for ( int i=0; i<Used; i++ )
{
CoursePtr[i] = RHS.CoursePtr[i];
}

}//student has an array of courses



7

Assignment Operator

� An assignment operator allows you to 
transfer a copy of an already existing 
object into an already existing object.

� e.g. StudentA = StudentB;
� This is a simple assignment statement.
� The difference between this and a copy 

constructor is the missing StudentA
already exists

Assignment Operator
const Student& Student::operator=(const Student& RHS )
{

if ( this != &RHS )
{

delete [] this.CoursePtr;
//perform memberwise copy
CoursePtr = new Course [size];
for ( int i=0; i<Used; i++ )
{

CoursePrt[i] = RHS.CoursePtr[i];
}

return *this;
}  //Why is a “const Student&” returned?

x=y=z;//y=z must return a Student& to be assigned to x

Destructor

Student::~Student()
{
delete [] CoursePtr;

}


