
CS 1704 Intro Data Structures and Software Engineering Test 1

Summer 2003 Page 1 of 7

READ THIS NOW!

Failure to read and follow the instructions below may result in severe penalties.

• Print your name in the space provided below.
• Print your name and ID number on the Opscan form and code your ID number correctly on the Opscan form.
• Choose the single best answer for each question — some answers may be partially correct. If you mark more than

one answer to a question, you will receive no credit for any of them.
• Unless a question involves determining whether given C++ code is syntactically correct, assume that it is. Unless

a question specifically deals with compiler #include directives, you should assume the necessary header files
have been included.

• Be careful to distinguish integer values from floating point values (containing a decimal point). In
questions/answers that require a distinction between integer and real values, integers will be represented without
a decimal point, whereas real values will have a decimal point, [1704 (integer), 1704.0 (floating point)].

• This is a closed-book, closed-notes examination.
• No laptops, calculators or other electronic devices may be used during this examination.
• You may not discuss (in any form: written, verbal or electronic) the content of this examination with any

student who has not taken it.
• You must return this test form when you complete the examination. Failure to adhere to any of these

restrictions is an Honor Code violation.
• There are 53 equal-valued questions. Each is worth 2 points.
• The answers you mark on the Opscan form will be considered your official answers unless the question directs otherwise.
• When you have finished, sign the pledge at the bottom of this page and turn in the test and your Opscan.

Do not start the test until instructed to do so!

Name (Last, First)
 printed

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

 signature

Separate Compilation:
For the next few questions, consider the C++ program composed of two cpp files and

two corresponding header files, as shown below.
//classes.h
class Guy {
public:
 int height;
};

//fun.h

void Fn(Guy obj);

//main.cpp
#include "classes.h"
#include "fun.h"

int main() {
 Guy T;
 Fn(T);
}

//fun.cpp
#include <iostream>
using namespace std;
#include "fun.h"

void Fn(Guy my_guy) {
 cout << my_guy.height;
}

1. Assume we want to compile (not build)
main.cpp above. What will the compiler
complain about when just main.cpp is
compiled?

a.) Nothing
b.) Multiple definitions for Guy
c.) Undeclared identifier Guy
d.) Undeclared identifier Fn()
e.) both b and c
f.) both b and d
g.) both c and d
h.) both e and f

2.) If the organization shown above is used,
what will the compiler complain about when
fun.cpp is compiled?

a.) Nothing
b.) Multiple definitions for Guy
c.) Undeclared identifier Guy
d.) Undeclared identifier Fn()
e.) both b and c
f.) both b and d
g.) both c and d
h.) both e and f

3.) The order of the #include statements in
main.cpp does not matter, (i.e. if #include
"fun.h" is listed above #include "classes.h" the

same compilation as above would result).
a.) True b.) False

4.) If we try to build the above program it gives
an error. How can we fix the error?

a.) Use preprocessor directives #ifndef,
#define, and #endif

b.) Add #include "classes.h" to the top
of the file fun.h

c.) Add #include "fun.h" to the top of
the file classes.h

d.) both a and b
e.) both b and c
f.) both a and c
g.) both d and e

5.) What is the purpose of the #include
mechanism in C++?

a.) To "import" declarations of
names that are declared elsewhere
into a scope in which those names
are to be used

b.) To "import" declarations of all
names that are to be used into a
scope

c.) To justify the inclusion of the
#ifndef and #endif in the C++
language

d.) To create classes

6.) The effects of intelligent use of separate
compilation include:

a.) Reduced compilation/link time for
large projects after implementation
changes in one function or class.

b.) Increased compilation/link time for
large projects after implementation
changes in one function or class.

c.) Easier re-use of independent code
modules, such as data structures or
data types

d.) Harder re-use of independent code
modules, such as data structures or
data types

e.) both a and c
f.) both a and d
g.) both b and c
h.) both b and d

Command Line Arguments:
7.) Suppose we have a dos command-line
program named solcmd that accepts only one
argument from the command line and suppose
we type the following command at the dos
prompt. (Assume "ifstream my_file;" has been
initialized.)

 solcmd afilename.txt

a.) my_file.open(argc[0]);
b.) my_file.open(argc[1]);
c.) my_file.open(argc[2]);
d.) my_file.open(argv[0]);
e.) my_file.open(argv[1]);
f.) my_file.open(argv[2]);
g.) None of the above because we need

to use .c_str()

Class Basics
8.) If we have the classes A and B, and within
the interface of B we have the statement "friend
class A" then class B can access the private
members of class A.

a.) True b.) False

9.) A static variable is initialized

a.) In the constructor, as in
b.) My_Class::My_Class():my_staticva

r(0) {/*rest of constructor*/}
c.) At file scope at the beginning of

the implementation
d.) In the class interface where it is

declared

Assume the following class declaration for the next few problems:
class Electric_Heat {
private:
//true if heat is on
bool heat;
 //0-212 degrees
int temperature;

public:
Electric_Heat();
Electric_Heat(bool onoff,
 int setting);
void turnOn();
void turnOff();
void isOn();
void lower(int amount);
int getTemperature();
};

Electric_Heat::Electric_Heat() {
heat=false;//heat is off
temperature=73; //default
}

Electric_Heat::Electric_Heat(
 bool onoff, int setting) {
heat = onoff;
temperature=setting;
}

void Electric_Heat::turnOn(){
heat=true;
}
void Electric_Heat::turnOff() {
heat=false;
}

bool Electric_Heat::
 isOn() {
return heat;
}

void Electric_Heat::
 lower(int amount) {
//can be negative to increase
temperature-=amount;
}

int Electric_Heat::
 getTemperature() {
return temperature;
}

10.) If we declare an array of type
Electric_Heat of size 6, how many function or
method calls will be made?

a.) 1
b.) 2
c.) 3
d.) 6
e.) 12

11.) If we declare two Electric_Heat ers
(Electric_Heat Kitchen(true, 70), Bedroom;),
which of the following statements are valid?

a.) bool Electric_Heat_State=
 (Kitchen==Bedroom);
b.) Electric_Heat Room=Bedroom;
c.) Kitchen = Bedroom;
d.) Kitchen->lower(-10);
e.) cout << Bedroom;
f.) 2 of the above are valid
g.) 3 of the above are valid
h.) 4 of the above are valid
i.) all above are valid

12.) SHORT ANSWER: The statement(s) in
question 11 that is/are valid raise(s) an issue if
pointers are declared as data members of
Electric_Heat. Explain.

The equal’s operator…since it is a shallow
copy, if there are pointers, both objects will
have the same shared data since just the
pointer is copied.

13.) SHORT ANSWER: Which of the
methods in Electric_Heat should have been
declared constant? Why?

isOn and getTemperature since they both do
not change any data members.

14.) Say we have the following code in a
separate cpp file. What happens?
#include <iostream>
using namespace std;

bool setOffAlarm(Electric_Heat Room) {
 return (room.temperature > 90);
}
void main () {
 Electric_Heat laundry(true, 85);
 laundry.lower(-15);
 if (setOffAlarm(laundry))
 cout << "WARNING!!";
}

a.) When run will display
"WARNING"

b.) When run will not display
”WARNING"

c.) Causes a compilation error
d.) None of the above

15.) If Electric_Heat::isON() was implemented
with the line "return (*this)->heat;" instead of
the current implementation, what would
happen?

a.) Compilation error
b.) Would work as before
c.) Returns a pointer to heat which

would compile but breaks the
encapsulation

16.) Which of the following should always be
implemented by the programmer?

a.) Mutator methods
b.) Observer methods
c.) Constructors with parameters
d.) Default constructor
e.) all of the above

17.) Which of the following key words do not
help set a class' access:

a.) public
b.) private
c.) partial
d.) protected

18.) Which of the following statements are
true?

a.) Both the class and the struct have private
members by default

b.) Both the class and the struct have public
members by default

c.) The class has public and the struct has
private members by default

d.) The class has private and the struct
has public members by default

19.) What should a method never return?

a.) private data
b.) a pointer to private data
c.) void
d.) both a and b
e.) both b and c
f.) both a and c

Software Engineering:
20.) Which of the following is a defualt
constructor?

a.) MyClass::MyClass(int x, int y);
b.) MyClass::MyClass();
c.) MyClass::MyClass(int x=1, int y=1);
d.) both a and b
e.) both b and c
f.) both a and c

21.) Which of the following declares two
pointers to ints?

a.) int x, *y;
b.) int *x, y;
c.) int *x, *y;
d.) both b and c

22.) What is the denominator of the percentage
of time that should be spent coding (mark on
scantron).

6

23.) When developing a software system, the
cost of correcting a "bug" depends on when it is
caught. Which of the following are true?

a.) Errors caught during testing cost the
least to fix

b.) Errors caught during design cost the
least to fix

c.) Errors caught during coding cost the
least to fix

d.) Errors caught during coding cost the
most to fix

24.) Which of the following are NOT true: A
software engineer spends time designing
(instead of going straight to coding)

a.) So he can prevent errors from
happening during coding,

b.) So he can communicate what needs to
be coded to programmers,

c.) So maintainers of the software can
make changes easier,

d.) So he can find missing requirements,
e.) So he can reuse earlier work, and
f.) So he can have a hard copy of the

software.

25-31.) Put the following steps of the
Waterflow Model in order.

a.) Requirements
b.) Testing
c.) Low Level Design
d.) Integration
e.) Specification
f.) High Level Design
g.) Coding
a,e,f,c,g,d,b

32.) Is program correctness verifiable?
a.) Yes
b.) No

33.) The more errors you find during testing,
the lower the probability that you will find
more errors.

a.) True
b.) False

34-36) Lets say you are interested in doing
Multiple Condition Coverage for a decision
that had 7 conditions. How many test cases
would you have to supply? (Enter each digit for
questions 34-36. If the answer is less than 100,
put a 0 for question 34. If the answer is less
than 10, put a 0 for both question 34 and 35.)

2^7=128

37.) What is the cyclomatic complexity of the
graph to the right?(Put answer on scantron.)
7-6+2=3
38.) Find as many independent paths as you
can in the graph to the right.
1 2 6
1 2 3 5 2 6
1 2 3 4 5 2 6

Misc:
39.) The statements below are valid.
 int x=5;
 int y=&*x;

a.) True
b.) False

40.) A static variable has the same value for all
objects of the same type.

a.) True
b.) False

Match the following:
41.) .cpp file d
42.) .h file e
43.) Accessor method h
44.) Data hiding b
45.) Destructor c
46.) Encapsulation f
47.) extern g
48.) Mutator method i
49.) Utility method a

Match the following:

a.) private method
b.) Abstract data type
c.) carries out “termination

housekeeping”
d.) class implementation
e.) class interface
f.) class type
g.) global variables
h.) public const method
i.) public method

50.) Conditional compilation c
51.) Member-access specifier a
52.) Scope resolution operator b

a.) “.” or “->”
b.) “::”
c.) #ifndef, #define, #endif, etc.

53.) We want to overload the > operator for the class MyClass. MyClass simply holds an
integer x. Write the method implementation below.

bool MyClass::operator>(const MyClass& MC) const {
 return (x>MC.x);
}

