
Computer Science Dept Va Tech August, 1998 ©1995-2001 Barnette ND, McQuain WD

1Static Memory

Intro Data Structures & SE

Static Memory

Table of Contents

Memory Lifetime
Static Local Variable
Static Class Members
Class Count

Computer Science Dept Va Tech August, 1998 ©1995-2001 Barnette ND, McQuain WD

2Static Memory

Intro Data Structures & SE

Memory Lifetime

Variable Lifetime:
The period during program execution during which a variable
has memory allocated/assigned to it.

Automatic Storage:
Storage is assigned/allocated to automatic variables when
execution enters the program block in which the variable
definition occurs. Storage is automatically
reclaimed/deallocated from automatic variables when
execution exits the program block in which the variable
definition occurs. Automatic variables are often assigned and
reclaimed multiple times during execution.

All register, local variables and parameters are by default
automatic variables. The keyword auto may be prefixed to a
a variable definition to designate its storage.

Static Storage:
Storage is assigned/allocated to automatic variables when
program execution begins and storage is not
reclaimed/deallocated from static variables until execution
completes. (The same lifetime as global variables.)

The keyword static may be prefixed to a a variable
definition to designate its storage. (Extern variables are also
considered static variables.)

Computer Science Dept Va Tech August, 1998 ©1995-2001 Barnette ND, McQuain WD

3Static Memory

Intro Data Structures & SE

Static Local Variable

Random Number Generator:

Functions that generate random numbers need to remember
the last number generated. A local static variable is ideal
for this purpose.

The initialization of the seed is executed once only. After
the first call to random() the subsequent calls will use the
last returned value to determine the next random number.

//Linear Congruential Generator
//returns a random integer
//between 0. . .65535
long random(const long InitialSeed = 13;) {

const long MULITPLIER = 25173;
const long INCREMENT = 13849;
const long MODULUS = 65536;

static long seed = InitialSeed;

seed = (MULITPLIER * seed + INCREMENT)
% MODULUS;

return (seed);
}

Computer Science Dept Va Tech August, 1998 ©1995-2001 Barnette ND, McQuain WD

4Static Memory

Intro Data Structures & SE

Static Class Members

Class members may be declared static. Data members
declared as static are “class-wide” data. Only one copy of
the static data members exist and is shared by all objects of
the class. Static data members are usually used to represent
class properties or “states of the class.

Static data members are not global variables. Their scope is
restricted to the containing class. They can only be defined
and initialized once at the file scope level. They can be
accessed when no class objects exist by using the class
name and the scope resolution operator or by a static
function member. (Static function members may only access
other static members and contain no this pointer.)

Consider a class whose objects need to know how many
other objects of the class are in existence at any given time.
The following simple class could be incorporated for such a
purpose.

Computer Science Dept Va Tech August, 1998 ©1995-2001 Barnette ND, McQuain WD

5Static Memory

Intro Data Structures & SE

Class Count

//ClassCount.h
#ifndef CLASSCOUNT_H
#define CLASSCOUNT _H
class ClassCount {
private:
static int objects;

public:
ClassCount();
static int GetNumObjects() const;
~ClassCount();

};
#endif

//ClassCount.cpp
#include “ClassCount.h”

//static definition & initialization
int ClassCount::objects = 0; //file scope

ClassCount::ClassCount() { objects++; }

int ClassCount::GetNumObjects()const {return objects;}

ClassCount::~ClassCount() { objects--; }

// . . . client code outside of class . . .
#include “ClassCount.h”
// . . .
int Count = ClassCount::GetNumObjects();

// call to static function member when
// no class objects exist

