
Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

114. Searching

Intro Data Structures & SE

Simple Searching

Slides

1. Table of Contents
2. Sequential Searching
3. Probability Ordering
4. Sequential Search Code
5. Sequential Search Code (cont)
6. Binary Search
7. Interpolation Search

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

214. Searching

Intro Data Structures & SE

Sequential Searching

Unsorted List
– Each element is compared to locate the desired

element one after another starting at the head of the
list.

– Worst Case Order = O(N)
† desired element is at the end of the list.

– Average Case Order = O(N/2) ∈ O(N)
† one half of the list must be scanned on the average.

– Assumes that the probability of each element in the
list being searched for is equal.

Sequential Searching on a Sorted list
– Search stops when element is located or a larger element (ascending

order) is encountered.
– Worst case and average case orders are the same as the unordered

list.

Simple Searching
• Internal (primary memory) searching

External => File Search
• (Indexes, BTrees, files, etc.)

Simple Searching
• Internal (primary memory) searching

External => File Search
• (Indexes, BTrees, files, etc.)

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

314. Searching

Intro Data Structures & SE

Probability Ordering

Unequal Access Probabilities
– Implemented when a small subset of the list elements are

accessed more frequently than other elements.

Static Probabilities
– When the contents of the list are static the most frequently

accessed elements are stored at the beginning of the list.
– Assumes that access probabilities are also static

Dynamic Probabilities
– For nonstatic lists or lists with dynamic probability element

accesses, a dynamic element ordering scheme is required:

– Sequential Swap Scheme
† Move each element accessed to the start of the list if it is not

within some threshold units of the head of the list.

– Bubble Scheme
† Swap each element accessed with the preceding

element to allow elements to “bubble” to the head of the list.

– Access Count Scheme
† Maintain a counter for each element that is incremented anytime

an element is accessed.
† Maintain a sorted list ordered on the access counts.

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

414. Searching

Intro Data Structures & SE

Sequential Search Code

Normal Sequential Search Function

– Coded inline to avoid function call overhead:

– Problem: two comparisons in the loop are inefficient
– Search sequentially down to 0 using 0 as limit test.

const int MISSING = -1;

int SeqSearch (const Item A[], Item K,
int size) {

int i;

for (i = 0 ; i < size; i++) {
if (K == A[i])

return (i);
}
return (MISSING);

}

inline int SeqSearch2 (const Item A[], Item K,
int size) {

int i;
for (i = 0; ((i < size) && !(K == A[i])); i++)
;

return ((i < size) ? (i) : (MISSING));
}

const int MISSING = -1;

int SeqSearch3 (const Item A[], Item K, int size) {
int i;

for (i = size -1; (!(K == A[i]) && (i)); i--);

if (K == A[i])
return (i);

else
return (MISSING);

}

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

514. Searching

Intro Data Structures & SE

Sequential Search continued

Sentinel Method
– Store the desired element at the end of the array:

– Requires storage at the end of the array to always be available.

– Ensures that the loop will terminate.

– Array parameter must be passed by reference to allow the sentinel
insertion.

const int MISSING = -1;

int SeqSearch4 (Item A[], Item K, int size) {

int i;

A[size] = K;
for (i = 0; !(K == A[i]); i++)
;

if (i < size)
return (i);

else
return (MISSING);

}

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

614. Searching

Intro Data Structures & SE

Binary Search

Algorithm

Recursive Binary Search Function

– Worst Case Order = O(log2 N)
– Note: for small lists a sequential search will usually be faster due to

the midpoint computation and comparsions.
Subtle Algorithm Adjustments

– Minor changes to highly efficient algorithms (e.g., binary search)
can have a drastic negative effect on execution.

– Changing the indexes to longints can increase execution time by a
factor of 3.

– Using real division and truncating for the midpoint computation
may slow execution by more than 10 times.

IF desired element = middle element of list THEN
found

ELSE
IF desired element < middle element
THEN set list to lower half & repeat process
ELSE set list to upper half & repeat process

const int MISSING = -1;

int BinarySearch (const Item A[], Item K, int L, int R) {

int Midpoint = (L+R) / 2 ; //compute midpoint

if (L > R) // If search interval is empty return -1
return MISSING ;

else if (K == A[Midpoint]) //successful search
return Midpoint;

else if (A[Midpoint] < K) //search upper half
return BinarySearch(A, K, Midpoint + 1, R);

else //search lower half
return BinarySearch(A, K, L, Midpoint - 1);

}

Computer Science Dept Va Tech Aug., 2001 ©1995-2001 Barnette ND, McQuain WD

714. Searching

Intro Data Structures & SE

Interpolation Search

Variation of Binary Searching
– Attempts to more accurately predict where the item may fall within

the list. Similar to looking up telephone numbers
– Standard Binary Search Midpoint Computation:

– General Binary Search Midpoint Computation:

– Interpolation replaces the 1/2 (in the above formula) with an
estimate of where the desired element is located in the range, based
on the available values (be careful of int arithmetic):

– Example:
– Assume 30K recs of SSNs in the range from 0 ... 600 00 0000
– Searching for 222 22 2222 yields an initial estimate of:

– Worst Case Order approximately = O(log log N)
– Can be assumed to be a constant of about 5 since ≅ (lg lg 109)
– Assumes the search values are evenly distributed over the search

range, (! True for SSNs)
– Inefficient for searching small number of elements

Midpoint = (L+R) / 2;

Midpoint = L + 1/2 * (R - L);

Interp = L + // base loc +
((K - A[L]) / // % of distance K is from
(A[R] - A[L])) * // A[L] to A[R] *
(R - L); // length of search space

Interpolation = 0 + ((222222222 - 0) /
(600000000 - 0)) *
(30000 - 0);

= 11111

