
Computer Science Dept Va Tech Aug., 2001 ©1995-2001  Barnette ND,  McQuain WD

114. Searching

Intro Data Structures & SE

Simple Searching
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214. Searching

Intro Data Structures & SE

Sequential Searching

Unsorted List
– Each element is compared to locate the desired 

element one after another starting at the head of the 
list.

– Worst Case Order = O( N ) 
† desired element is at the end of the list.

– Average Case Order = O( N/2 ) ∈ O(N)
† one half of the list must be scanned on the average.

– Assumes that the probability of each element in the 
list being searched for is equal.

Sequential Searching on a Sorted list
– Search stops when element is located or a larger element (ascending 

order) is encountered. 
– Worst case and average case orders are the same as the  unordered 

list.

Simple Searching
• Internal (primary memory) searching

External => File Search
• (Indexes, BTrees, files, etc.)

Simple Searching
• Internal (primary memory) searching

External => File Search
• (Indexes, BTrees, files, etc.)
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314. Searching

Intro Data Structures & SE

Probability Ordering

Unequal Access Probabilities
– Implemented when a small subset of the list elements are 

accessed more frequently than other elements.

Static Probabilities
– When the contents of the list are static the most frequently 

accessed elements are stored at the beginning of the list.
– Assumes that access probabilities are also static

Dynamic Probabilities
– For nonstatic lists or lists with dynamic probability element 

accesses, a dynamic element ordering scheme is required:

– Sequential Swap Scheme
† Move each element accessed to the start of the list if it is not

within some threshold units of the head of the list.

– Bubble Scheme
† Swap each element accessed with the preceding 

element to allow elements to “bubble” to the head of the list.

– Access Count Scheme
† Maintain a counter for each element that is incremented anytime 

an element is accessed.
† Maintain a sorted list ordered on the access counts. 
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414. Searching

Intro Data Structures & SE

Sequential Search Code

Normal Sequential Search Function

– Coded inline to avoid function call overhead:

– Problem: two comparisons in the loop are inefficient
– Search sequentially down to 0 using 0 as limit test.

const int MISSING = -1;

int SeqSearch (const Item A[], Item K,
int size) {

int i;

for ( i = 0 ; i < size; i++ ) {
if ( K == A[i] )

return ( i );
}
return (MISSING);

}

inline int SeqSearch2 (const Item A[], Item K,
int size) {

int i;
for ( i = 0; ((i < size) && !( K == A[i])); i++ )
;

return ( ( i < size ) ? ( i ) : ( MISSING ) );
}

const int MISSING = -1;

int SeqSearch3 (const Item A[], Item K, int size) {
int i;

for ( i = size -1; (!(K == A[i]) && (i)); i--);

if ( K == A[i] )
return ( i );

else
return (MISSING);

}
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514. Searching

Intro Data Structures & SE

Sequential Search continued

Sentinel Method
– Store the desired element at the end of the array:

– Requires storage at the end of the array to always be available.

– Ensures that the loop will terminate.

– Array parameter must be passed by reference to allow the sentinel 
insertion.

const int MISSING = -1;

int SeqSearch4 (Item A[], Item K, int size) {

int i;

A[size] = K;
for ( i = 0; !(K == A[i]); i++ )
;

if ( i < size )
return ( i );

else
return ( MISSING);

}
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614. Searching

Intro Data Structures & SE

Binary Search

Algorithm

Recursive Binary Search Function

– Worst Case Order = O( log2 N )
– Note: for small lists a sequential search will usually be faster due to 

the midpoint computation and comparsions.
Subtle Algorithm Adjustments

– Minor changes to highly efficient algorithms (e.g., binary search) 
can have a drastic negative effect on execution.

– Changing the indexes to longints can increase execution time by a 
factor of 3.

– Using real division and truncating for the midpoint computation 
may slow execution by more than 10 times.

IF desired element = middle element of list THEN
found

ELSE
IF desired element < middle element
THEN set list to lower half & repeat process
ELSE set list to upper half & repeat process

const int MISSING = -1;

int BinarySearch ( const Item A[], Item K, int L, int R) {

int Midpoint = (L+R) / 2 ; //compute midpoint

if ( L > R ) // If search interval is empty return -1
return MISSING ;

else if ( K == A[Midpoint] ) //successful search
return Midpoint;

else if ( A[Midpoint] < K ) //search upper half
return BinarySearch(A, K, Midpoint + 1, R);

else //search lower half
return BinarySearch(A, K, L, Midpoint - 1);

}
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714. Searching

Intro Data Structures & SE

Interpolation Search

Variation of Binary Searching
– Attempts to more accurately predict where the item may fall within 

the list. Similar to looking up telephone numbers
– Standard Binary Search Midpoint Computation:

– General Binary Search Midpoint Computation:

– Interpolation replaces the 1/2 (in the above formula) with an 
estimate of where the desired element is located in the range, based 
on the available values (be careful of int arithmetic):

– Example:
– Assume 30K recs of SSNs in the range from 0 ... 600 00 0000
– Searching for 222 22 2222 yields an initial estimate of:

– Worst Case Order approximately  = O( log log N )
– Can be assumed to be a constant of about 5 since ≅ (lg lg 109)
– Assumes the search values are evenly distributed over the search

range, ( ! True for SSNs)
– Inefficient for searching small number of elements

Midpoint = (L+R) / 2;

Midpoint = L + 1/2 * ( R - L);

Interp = L + // base loc +
((K - A[L]) / // % of distance K is from
(A[R] - A[L])) * // A[L] to A[R] *
(R - L); // length of search space

Interpolation = 0 + ((222222222 - 0) /
(600000000 - 0)) *
(30000 - 0);

= 11111


