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Introduction 13. Sorting 2

Definitions and Terminology:
Internal sorts holds all datain RAM
Externa sorts use Files

Ascending Order:
T Low to High

Descending Order:
T HightoLow

Stable Sort:
T Maintainsthe relative order of equal elements, in situ.

t Desirableif list isalmost sorted or if items with equal values
are to aso be ordered on a secondary field.

Program efficiency

Overall program efficiency may depend entirely upon
sorting algorithm => clarity must be sacrificed for speed.

Sorting Algorithm Analysis
Performed upon the “overriding” operation in the algorithm:
T Comparisons

T Swaps
void swap( int& x, int&y) {
Int tnp = Xx;
X = Y;
y = tnp;

}
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Behavior
Bubble elements down (up) to their location in the

sorted order. J
for (i C 1 < n-1; i ++)
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Bubble Sort Complexity 13. Sorting 4

voi d Bubbl eSort(int A |, const int n) {

for (int i =0; i < n-1; i++)

for (int j =n-1; j >i; j--) {
if (A < A )
swap(Al ||, A )
}
Time Analysis

If-statement:

time 2 for the condition (and subtraction) + time 4 for the swap (3 assigns +

Setup), so 5
inner for-loop:

body executed for j-values from n-1 down to i+1, or n-i-1 times
loop body istime 6 for if-stmt + time 2 for test and update

n—i-1
>'8=8(n-i-1) @
j=1

outer for-loop:

body executed for i-values from O up to n-2 (or 1 to n-1)
loop body istime for inner for-loop + time 3 for loop test and update

So counting the initialization & pre-tests of the for-loop, the overall complexity is:

3+ni(3+2+8(n—i —1))=3+ni(8n—8i -3)

i=1 i=1

=3+8n(n-1) —g(n—l)(n— 2)—-3(n-1)

which isclearly O(n?).
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voi d Bubbl eSort(int A |, const int n) {
for (int i =0; i < n-1; i++)
for (int j =n-1; j >i; j--) {

if (A < A )
swap( A , A );

Swaps and Compares Analysis
If-statement:
1 compare and in worst case, 1 swap

inner for-loop:
body executed for j-values from n-1 down to i+1, or n-i-1 times
each execution of body involves 1 compare and up to 1 swap

outer for-loop:
body executed for i-values from O up to n-2 (or 1 to n-1)

each execution of body involves n-i-1 compares and up to n-i-1 swaps

So in the worst case, the number of swaps equals the number of compares, and is:

n-—

| 1(n—i —1):n(n—l)—%(n—l)(n—Z)—(n—l)

which is clearly O(n?).
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Behavior
Inthe it pass, select the e ement with the lowest value
among Ali], ..., A[n-1], & swap it with A[i].
Results after | passes. thei lowest elements will occupy
A[Q], ..., A[i] in sorted order.

for (Begin = 0; Begin < Size - 1; Begin++) {

Smal | SoFar = Begi n;
for (Check = Begin + 1; Check < Size; Check++) {
I f (aLi st < alLi st )
Smal | SoFar = Check;
}
swap( aLi st , alLi st ) ;

}

Graphical Trace

Working

Working

Finished
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voi d Sel ectionSort (int aList , const int Size) {
i nt Begin, Small SoFar, Check;

for (Begin = 0; Begin < Size - 1; Begin++) {
Smal | SoFar = Begi n;
for (Check = Begin + 1; Check < Size; Check++) {
I f (aLi st < ali st )
Smal | SoFar = Check;
}

swap( aLi st , aLi st );

Swaps and Compares Analysis
If-statement: 1 compare

inner for-loop:
body executed n-i-1 times (i isBegin and nis Size)
each execution of body involves 1 compare and no swaps

outer for-loop:
body executed n-1 times
each execution of body involves n-i-1 compares and 1 swap

So in the worst case, the number of swapsisn—1, and the number of comparesis:

n-—

| 1(n—i —1):n(n—l)—%(n—l)(n—Z)—(n—l)

which is clearly O(n?) and the same as for BubbleSort.
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Min/ Max Sorting

algorithm passes thru the array locating the min and max
elementsin the array Ali], ..., A[n-i+1]. Swapping the min
with A[i] and the max with A[n-i+1].
Results after the it pass. the elements A[1], ..., A[i] and
A[n-i+1], ..., A[n] arein sorted order.

tinsorfed Array

1 2 3 4 > b K & 9 10

Q5 |77 |63 | 58|42 | 37| 31| 26| 19|12

After Izt Pass
1 2 3 4 5 3 Ky 8 g 10

1277 |63 | 58|42 | 37| 31| 26| 19|95

Arfer 3rd Pess
1 2 3 4 5 b Fi 3 q 10

12119 | 20| 58142 | 37| 31|63 |77 |95

5 passes to required sort the above array = N / 2.
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Code

voi d Dupl exSel ect Sort (raytype ray, int start,
int finish) {

int low, high, mn, max, small, |arge, m nnmax;
| tem t np;
| ow = start; hi gh = finish;

while ( low < high ) {
smal | ray ;. omn
| ar ge ray ; max

| ow;
hi gh;

/|l search for smallest & | argest
for (mnmax = [ ow, m nmax <= hi gh; m nmax++) {
I f (ray < small) {
mn = mnmax; small = ray ;
else if (ray > | arge) {
max = mnmax; large = ray ;

} /[ for m nmax

/I check for swap interference

if ( (max == low) && (mn == high) ) {
swap( ray , ray ;
} //check for low 1/2 interference
else if (max == low) {
swap( ray , ray )
swap( ray , ray ;
} /1 (mn==1ow) || //no interference
el se {
swap( ray , ray );
swap( ray , ray )
}
| owAH+;
hi gh- -;
} /1 while Recursive implementation: slide 9.14

}
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Comparison O(DuplexSelectSort)
Outer Loop : WHILE i loop

loop limits shifted limits
=0...N/2-1 =1...N/2

Assume subset of array to sortisfrom1.. N
=1...N/2 (i.e. start ... finish)

Inner Loop : FOR j loop

Pass (i) loop limits shifted limits

1st 1..N =1..N

2nd 2..N-1 =1..N-2

3rd 3..N-2 =1..N-4

ith iteration i..N- (i-1) =1..N-(i-1)*2

N/2-1 =N/2-1..N - (N/2-1-1)
=N/2-1..N/2+2 =1..4
=1..N-(i-1)*2

N/2 =N/2..N-(N/2-1)

=N/2..N/2+1 =1..2
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|
WMZ
= o

Worst Case:
2 Comparisons on each element
N/2[ N=(i-1)
=2 2.2
i=1| =i

N/2
=2) '[N -

i=1

expanding yields:

= 2[ N+N-2+N-4+ ...

summing the arithmetic

sequence yields:

Ay

2
:%+N 00O (N?)

+6+4+2]

distributing yields:
N
A2
2 2
N? M
_ 2_4(4 2 N
2 2
2
_ 2_4@v+N_N_
28 4 2
=NZ - -N+2N
, 2
:%+NDO(N2)
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ASsume: Stat=1 Finish=N

Analysis. (worst case)
Initialization of High and Low = 2
While Loop
pretest condition =1

loop body executes N/2 times (i from 1 to N/2)
time cost is 7 (for while condition + assignments + increments) +

time for for-loop + time for swap code
For-loop
initialization & pretest condition = 2
loop body executes N-2 (i-1) times
time cost is 2 (for test and increment) + timefor if
time cost of if is4 (two if-conditions + 2 assignments)

Swap Code
time cost is 3 for first if-condition + 1 for second if-condition + cost of two
swaps
1 for function setup + time cost of aswap is 3 for assignments
N/2 N-2(i-1)
T(N)=3+) | (7+2)+ > 6+(3+1+4+4)
i=1 j=1
N/2
. So Duplex
=3+ Z (21+ 6(N —2(] _1))) Selection Sort is
i=1 another O(N?)
N/2 sort algorithm.
=3+ (6N +33-12i)
i=1 But, the
3 27 coefficient IS
= N?°+=—N+3 better than for
2 2 BubbleSort.
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Comparison-Based Sorting
Algorithms which compare element values to each other

What is the minimum number of comparisons, required to sort N
elements using a comparison-based sort?

Comparison Tree

Binary tree (hierarchical graph < 2 branches per node) which
contains comparisons between 2 elements at each non-leaf node &
containing element orderings at its leaf (terminal) nodes.

Comparison Tree for 3 Elements Depth
-a <b
T F 0
b<c
a<c 1
T/ i U F
Order
a<b<c asc bcirgirc b<c 2
Order Order Order Order 3
a<c<b c<a<b b<c<a <c¢c<b<a

3 |- Any of the 3 elements (a, b, ¢) could be first in the final order. Thus
there are 3 distinct ways the final sorted order could start.

2 |- After choosing the first element, there are two possible selections
for the next sorted element.

1 After choosing the first two elements thereis only 1 remaining
selection for the last element.

Therefore selecting the first element one of 3 ways, the second
element one of 2 ways and the last element 1 way, there are 6
possible final sorted orderings=3* 2* 1= 3!

Intro Data Structures & SE
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Order Tree for sorting N Elements

Any of the N elements (1 ... N) could befirst in the final order. Thus
there are N distinct ways the final sorted order could start.

After choosing the first element, there are N-1 possible selections
for the next sorted element.

After choosing the first two elements there N-2 possible selections
for the next sorted element, etc.

Therefore selecting the first element one of N ways, the second
element one of N-1 ways, etc., thereare N * (N-1) * (N-2) * .. .* 2
* 1 possible final sorted orderings which = N!

General Comparison Tree Sorting

1

-~

/
0O

O~

—

The comparison tree for N elements must have N! leaf nodes0 .
Each leaf node contains one of the possible orderings of all of the N
elements.

Consider the previous comparison tree for 3 elements, all of the |eaf
nodes are at a depth of either 2 or 3> [ log,3! |

The comparison tree for 4 elements must contain 4!=24 leaf nodes,
all of which would be at a depth of either 4 or 5> Llog24!J

1
2
OO O O O O O 3
AN AN AV AW AN ANA
O000O0O00000O0000O0 4
A AW AV AW AW AW AV AW AV AW AW AW AWAWA
000000000000000000000000000000
floor y= [ x], yis the largest integer such that y< x.
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General Comparison Trees

The comparison tree for N elements must contain N! leaf nodes, all
of which would be at a depth > log,N! |

The minimal number of comparisons required to sort a specific
(unsorted) ordering is equal to the depth from the root to aleaf.

)\\

O O O

AW AWA /\ /\ %\ /\ /

O0000000000000O0O0
ANANAANNNASD A
000000000000000000000000000000060

Since the depth of all leaf nodesis > | log,N! | in a comparison tree,
the minimal number of comparisons to sort a specific initial
ordering of N elementsis> | log,N! |

Stirling’ s Approximation for log,(N!) can be used to determine a
lower bound for log,(N!) whichis O(NlogN )

No comparison based sorting algorithm can sort faster than

O(N log N)
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Algorithm
Select an item in the array asthe pivot key.
Divide the array into two partitions. a left partition containing
elements < the pivot key and aright partition containing elements >
the pivot key.
Trace
Start with i and j pointing to the first & last elements, respectively.
Select the pivot (3): 314159265 8
R L
Swap the end elements, then movel, r inwards.
81415926 5 3

L R
Swap, and repeat: [2 1 415986 5 3
L R
Swap, and repeat: [211|4593653]
R L
Partition Function:
int Partition(ltemA |, int start, int end, Item pivot ){

int L = start, R = end;

( A , A );

while (A < pivot ) L++;
e ('(A < pivot)) R-;

} while (R > L);

return (L);
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Pivoting
Partitioning test requires at least 1 key with avalue < that of the
pivot, and 1 value > to that of the pivot.

Therefore, pick the greater of the first two distinct values (if any).

const int MSSING = -1;

I nt FindPivot(const ItemA |, int start, int end ) {
ltemfirstkey; //value of first key found

I nt pivot; /] pi vot index

I nt Kk; /[/run right |ooking for other key

firstkey = A ;
[lreturn -1 if different keys are not found
pi vot = M SSI NG
k = start + 1;
//scan for different key
while ( (k <= end) && (pivot == M SSING )
I f (firstkey < A kl) /' sel ect key
pi vot = k;
else if (A < firstkey)
pivot = start;
el se
k++;
return pivot;

}

lmproving FindPivot

Try and pick apivot such that the list is split into equal size sublists,
(a speedup that should cut the number of partition steps to about 2/3
that of picking the first element for the pivot).

Tt Choose the middle (median) of the first 3 elements.

T Pick k elements at random from the list, sort them & use the
median.

There is atrade-off between reduced number of partitions & time to
pick the pivot as k grows.
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Quicksort Function (recursive)

AV

const int MSSING = -1;
void QuickSort( ItemA |, int start, int end ) {

}

/!l sort the array fromstart ... end

|t em pi vot Key;

I nt pivotl ndex;

int Kk; //index of partition >= pivot

pi votl ndex = FindPivot( A start, end );
I f (pivotlndex !'= MSSING ({
pi vot Key = A ;
k = Partition( A start, end, pivotKey );
Qui ckSort( A, start, k-1 );
Qui ckSort( A, k, end );

}

A4

guicksort is based upon the intuition that swaps, (moves), should be
performed over large distances to be most effective

quicksort's average running time is faster than any currently known
O(nlog,n) internal sorting algorithms (by a constant factor).

For very small n (e.g., n < 16) asimple O(n?) algorithm is actually
faster than Quicksort.
When the sublist is small, use another sorting algorithm.

Worst Case = O(N2)

In the worst case, every partition might split thelist of sizej -1+ 1
into alist with 1 element, and alist withj - i elements.

A partition is split into sublists of size 1 & j-i when one of the first
two itemsin the sublist isthe largest item in the sublist which is
chosen by findpivot.

When will this worst case partitioning always occur?

Intro Data Structures & SE



Iterative Quicksort 13. Sorting 19

Iterative Conversion

Iterative implementation requires using a stack to store the partition
bounds remaining to be sorted.

Assume a stack implementation of elements consisting of two

integers:
struct Stackltem {
int |ow, hi;
}s
Partitioning
At the end of any given partition, only one subpartition need be
stacked.

The second subpartition (equated to the second recursive call), need
not be stacked since it isimmediately used for the next
subpartitioning.

Stacking

The order of therecursive calls, (i.e., the sorting of the
subpartitions) may be made in any order.

Stacking the larger subpartition assures that the size of the stack is
minimized, since the smaller subpartition will be further divided
less times than the larger subpartition.
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Quicksort Function (iterative)

void QuickSort( ItemA |, int start, int end ) {
// sort the array fromstart ... end
I tem pi vot Key;
int pivotlndex, tnpBnd;
int k; /lindex of partition >= pivot
Stackltem parts;
St ack subParts;

parts.low = start; parts. hi = end;
subParts. Push ( parts );

while (! subParts.Empty() ) {
parts = subParts. Pop();

while ( parts.hi > parts.low ) {
pi votl ndex = FindPivot( A parts.low, parts.hi );

if (pivotlndex !'= M SSI NG {
pi vot Key = A
k = Partition( A, parts. |0Ml, parts.hi , pivotKey );
/'l push the larger subpartition

if ( (k-parts.low > (parts.hi-k) ) { //stk |ow part
tmpBnd = parts. hi;
parts. hi = k-1;
subParts. Push( parts );

parts.low = k; /lset current part to upper part
parts. hi = tnpBnd;
} /lend if

else { // stack upper (larger) part
tmpBnd = parts.|ow,
parts.low = k;
subParts. Push( parts );
parts.low = tnpBnd; //set current part to | ow part
parts. hi = k-1;
} /1 end else

} /] end if
el se /1 halt inner |oop when all elenents equa
parts. hi = parts.|ow

} /1 end while
} /1 end while

} /1 end QuickSort
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Quicksort Efficiency 13. Sorting 21

Graphical Trace

Working

Working

Working

Minor Improvements

All function calls should be replaced by inline code to avoid
function overhead.

Current partition bounds should be held in register variables.
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With large data records, swap pointers instead of copying

w| record 2 |

Generdl
records:
2 | ——»[record 2
1 | ——|record 1
j | — > | record |

\ 1/

><_

Al record 1 |

before swapping first two keys

>| record | |

after swapping first two keys

There' s atradeoff here between storage cost and time.
There’ s also atime versus time tradeoff. \WWe' re accepting
the cost of additional pointer dereferencesto avoid the cost

of some data copying.

Carefully investigate the average data arrangement in order
to select the optimal sorting algorithm.

No one algorithm works the best in all cases.

Intro Data Structures & SE
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Special Techniques for Special Cases

If sort key (member) consists of consecutive (unique) N
integers they can be easily mapped onto therange 0.. N-1 &
sorted.

If the N elements areinitially in array A, then:

ltem A |, B

for (int i =0; 1 <N |++)
BIA I |.CetKey() % N = A

takes O(n) time.
Requires exactly 1 record with each key value!
Of course, thisisavery special circumstance...

Special case of Bin Sorting. (If integers are not consecutive,
but within areasonable range, used bit flags can be used to
denote empty array dots.)
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BinSort 13. Sorting 24

BinSort is a somewhat more general O(N) sort technique.

Assume we need to sort an array of integersin the range 0-99:

34 16 83 76 40 72 38 80 89 87

Assume we have an array of 10 linked lists (bins) for storage.

First make a pass through the list of integers, and place each into the bin
that matchesits 1’ s digit.

Then, make a second pass, taking each bin in order, and place each integer
into the bin that matchesits 2’ s digit.

Bi n Bi n
0: 40 80 0:
1: 1: 16
2: 72 2:
3: 83 3. 34 38
4: 34 4: 40
5: 5:
6: 16 76 6:
7: 87 7: 72 76
8: 38 8: 80 83 87 89
9. 89 9.

Now if you just read the bins, in order, the elements will appear in
ascending order. Each pass takes O(N) work, and the number of passesis
just the number of digitsin the largest integer in the original list.

That beats QuickSort, but only in a somewhat special case.
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void BinSort(int Datal|, int nunData, LinkList Bin/ |) {
/'l First pass: a
for (int Idx = 0; ldx < nunmData; |dx++) {
int Digitl = Data % 10;
Bi n .gotoTail ();
Bi n .Insert(ltem Data ));//append to end
}
/| Second pass:
Li nkLi st Bi n2 , Note the modular
for (Idx = 0; ldx < 10; Idx++) { reuse here of the
Bi n . got oHead() ; linked list code
while (Bin .inList()) { covered earlier.
int currValue =
Bin .getCurrentDat a() . get Val ue();
int Digit2 = (currValue / 10) % 10;
Bi n2 .gotoTail (); //append to end
Bi n2 .Insert(lten(currVal ue));
Bi n . Advance();
}
}
Li neari zeBi ns(Bi n2, Data);
}
voi d LinearizeBins(LinkList Bin[|, int Target|]|) {
int Tidx = 0;
for (int Idx = 0; ldx < 10; ldx++) {
Bi n . got oHead() ;
while (Bin .inList()) {
Tar get =
Bi n .get Current Dat a() . get Val ue();
Ti dx++;
Bi n . Advance();
}
}
}
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