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Introduction

Definitions and Terminology:
– Internal sorts holds all data in RAM
– External sorts use Files
– Ascending Order:  

† Low to High
– Descending Order:  

† High to Low
– Stable Sort:

† Maintains the relative order of equal elements, in situ.
† Desirable if list is almost sorted or if items with equal values 
are to also be ordered on a secondary field.

Program efficiency 
– Overall program efficiency may depend entirely upon 

sorting algorithm => clarity must be sacrificed for speed.

Sorting Algorithm Analysis
– Performed upon the “overriding” operation in the algorithm:

† Comparisons
† Swaps

void swap( int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}
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Bubble Sort

Behavior
– Bubble elements down (up) to their location in the 

sorted order.

Graphical Trace

for (i = 0; i < n-1; i++)
for (j = n-1; j > i; j--)

if (A[j] < A[j-1])
swap(A[j],A[j-1]);

Starting

Working

Working

Finished
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Bubble Sort Complexity

void BubbleSort(int A[], const int n) {

for (int i = 0; i < n-1; i++)

for (int j = n-1; j > i; j--) {

if (A[j] < A[j-1])
swap(A[j],A[j-1]);

}
}

Time Analysis
if-statement:  

time 2 for the condition (and subtraction) + time 4 for the swap (3 assigns + 
setup), so 5

inner for-loop:
body executed for j-values from n-1 down to i+1, or n-i-1 times
loop body is time 6 for if-stmt + time 2 for test and update

outer for-loop:
body executed for i-values from 0 up to n-2 (or 1 to n-1)
loop body is time for inner for-loop + time 3 for loop test and update

So counting the initialization & pre-tests of the for-loop, the overall complexity is:

which is clearly O(n2).
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Bubble Sort Complexity

void BubbleSort(int A[], const int n) {

for (int i = 0; i < n-1; i++)

for (int j = n-1; j > i; j--) {

if (A[j] < A[j-1])
swap(A[j],A[j-1]);

}
}

Swaps and Compares Analysis
if-statement:  

1 compare and in worst case, 1 swap

inner for-loop:
body executed for j-values from n-1 down to i+1, or n-i-1 times
each execution of body involves 1 compare and up to 1 swap

outer for-loop:
body executed for i-values from 0 up to n-2 (or 1 to n-1)
each execution of body involves n-i-1 compares and up to n-i-1 swaps

So in the worst case, the number of swaps equals the number of compares, and is:

which is clearly O(n2).
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Selection Sort
Behavior

– In the ith pass, select the element with the lowest value 
among A[i], ..., A[n-1], & swap it with A[i].

– Results after i passes:  the i lowest elements will occupy 
A[0], ..., A[i] in sorted order.

Graphical Trace

for (Begin = 0; Begin < Size - 1; Begin++) {
SmallSoFar = Begin;
for (Check = Begin + 1; Check < Size; Check++) {

if (aList[Check] < aList[SmallSoFar])
SmallSoFar = Check;

}
swap(aList[Begin], aList[SmallSoFar]);

}

Working

Working

Finished
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Selection Sort Complexity
void SelectionSort(int aList[] , const int Size) {

int Begin, SmallSoFar, Check;

for (Begin = 0; Begin < Size - 1; Begin++) {
SmallSoFar = Begin;
for (Check = Begin + 1; Check < Size; Check++) {

if (aList[Check] < aList[SmallSoFar])
SmallSoFar = Check;

}
swap(aList[Begin], aList[SmallSoFar]);

}
}

Swaps and Compares Analysis
if-statement:  1 compare

inner for-loop:
body executed n-i-1 times (i is Begin and n is Size)
each execution of body involves 1 compare and no swaps

outer for-loop:
body executed n-1 times
each execution of body involves n-i-1 compares and 1 swap

So in the worst case, the number of swaps is n – 1, and the number of compares is:

which is clearly O(n2) and the same as for BubbleSort.
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Duplex Selection Sort

Min / Max Sorting
– algorithm passes thru the array locating the min and max 

elements in the array A[i], ..., A[n-i+1].  Swapping the min 
with A[i] and the max with A[n-i+1].

– Results after the ith pass: the elements A[1], ..., A[i] and 
A[n-i+1], ..., A[n] are in sorted order.

5 passes to required sort the above array = N / 2.
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Duplex Selection Sort (cont)

Code
void DuplexSelectSort(raytype ray, int start,

int finish) {
int low, high, min, max, small, large, minmax;
Item tmp;

low = start; high = finish;

while ( low < high ) {
small = ray[low ]; min = low;
large = ray[high]; max = high;

//search for smallest & largest
for (minmax = low; minmax <= high; minmax++) {

if (ray [ minmax ] < small) {
min = minmax; small = ray [ minmax ];

}
else if (ray [ minmax ] > large) {

max = minmax; large = ray [ minmax ];
}

} // for minmax

//check for swap interference
if ( (max == low) && (min == high) ) {

swap( ray[low], ray[high] );
} //check for low 1/2 interference
else if (max == low) {

swap( ray[max], ray[high] );
swap( ray[low], ray[min] );

} // (min == low) || //no interference
else {

swap( ray[min], ray[low] );
swap( ray[max], ray[high] );

}
low++;
high--;

} // while
}

Recursive implementation:  slide 9.14



Computer Science Dept Va Tech Aug., 2001 ©1995-2001  Barnette ND,  McQuain WD

1013. Sorting

Intro Data Structures & SE

Comparison Order Analysis

Comparison O(DuplexSelectSort)
– Outer Loop : WHILE i  loop

loop limits shifted limits
= 0 . . . N/2-1 = 1 . . . N/2

– Assume subset of array to sort is from 1 .. N
= 1 . . . N/2 (i.e. start ... finish )

– Inner Loop : FOR j  loop

Pass (i) loop limits shifted limits

1st   1 . . N = 1 . . N
2nd 2 . . N - 1  = 1 . . N - 2
3rd 3 . . N - 2 = 1 . . N - 4

• • • • • • • • •
ith iteration i . . N- (i-1) = 1 . . N-(i-1)*2
• • • • • • • • •

N/2-1  = N/2-1 . . N - (N/2-1-1)  
= N/2-1 . . N/2+2 = 1 . . 4
= 1 . . N-( i-1)*2

N/2 = N/2 . . N - (N/2-1)   
= N/2 . . N/2 + 1 = 1 . . 2
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Comparison Order Analysis (cont)

Worst Case:  
2 Comparisons on each element
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Time Analysis

Assume: Start = 1    Finish = N

Analysis: (worst case)
Initialization of High and Low = 2

While Loop
pretest condition = 1

loop body executes N/2 times (i from 1 to N/2) 
time cost is 7 (for while condition + assignments + increments) + 
time for for-loop + time for swap code

For-loop
initialization & pretest condition = 2
loop body executes N-2 (i-1) times
time cost is 2 (for test and increment) + time for if
time cost of if is 4 (two if-conditions + 2 assignments)

Swap Code
time cost is 3 for first if-condition + 1 for second if-condition + cost of two 

swaps
1 for function setup + time cost of a swap is 3 for assignments
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sort algorithm.

But, the 
coefficient IS 
better than for 
BubbleSort.
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Minimal Comparisons

Comparison-Based Sorting
– Algorithms which compare element values to each other
– What is the minimum number of comparisons, required to sort N 

elements using a comparison-based sort?
Comparison Tree

– Binary tree (hierarchical graph < 2 branches per node) which 
contains comparisons between 2 elements at each non-leaf node & 
containing element orderings at its leaf (terminal) nodes.

– Comparison Tree for 3 Elements

– Any of the 3 elements (a, b, c) could be first in the final order. Thus 
there are 3 distinct ways the final sorted order could start. 

– After choosing the first element, there are two possible selections 
for the next sorted element.

– After choosing the first two elements there is only 1 remaining 
selection for the last element. 

– Therefore selecting the first element one of 3 ways, the second 
element one of 2 ways and the last element 1 way, there are 6 
possible final sorted orderings = 3 * 2 * 1 = 3!

a < b

b < c

Order
a < b < c a < c

Order
a < c < b

Order
c < a < b

a < c

Order
b < a < c b < c

Order
b < c < a

Order
c < b < a

T F

T F T F

T F T F

3

Depth
0

1

2

3

2

1
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Comparison Tree Argument
Order Tree for sorting N Elements

– Any of the N elements (1 ... N) could be first in the final order. Thus 
there are N distinct ways the final sorted order could start. 

– After choosing the first element, there are N-1 possible selections 
for the next sorted element.

– After choosing the first two elements there N-2 possible selections 
for the next sorted element, etc.

– Therefore selecting the first element one of N ways, the second 
element one of N-1 ways, etc., there are N * (N-1) * (N-2) * . . . * 2 
* 1 possible final sorted orderings which = N!

General Comparison Tree Sorting
– The comparison tree for N elements must have N! leaf nodes    . 

Each leaf node contains one of the possible orderings of all of the N 
elements. 

– Consider the previous comparison tree for 3 elements, all of the leaf 
nodes are at a depth of either 2 or 3 >   log23! 

– The comparison tree for 4 elements must contain 4!=24 leaf nodes, 
all of which would be at a depth of either 4 or 5 > log24!

0

1

2

3

4

5

Depth:

floor y= x,   y is the largest integer such that y< x. 
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Intro Data Structures & SE

Minimal Order: Comparison Sorting

General Comparison Trees
– The comparison tree for N elements must contain N! leaf nodes, all 

of which would be at a depth > log2N!
– The minimal number of comparisons required to sort a specific 

(unsorted) ordering is equal to the depth from the root to a leaf.

– Since the depth of all leaf nodes is > log2N! in a comparison tree, 
the minimal number of comparisons to sort a specific initial 
ordering of N elements is > log2N!

– Stirling’s Approximation for log2(N!) can be used to determine a 
lower bound for log2(N!) which is O(NlogN )

– No comparison based sorting algorithm can sort faster than 

O(N log N)∴
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Quicksort: partitioning

Algorithm
– Select an item in the array as the  pivot key.
– Divide the array into two partitions: a left partition containing 

elements < the pivot key and a right partition containing elements >
the pivot key.

Trace
Start with i and j pointing to the first & last elements, respectively.  
Select the pivot (3): [3   1   4   1   5   9   2   6   5   8]

R                                           L
Swap the end elements, then move l, r inwards.

[8   1   4   1   5   9   2   6   5   3]
L                           R

Swap, and repeat: [2   1   4   1   5   9   8   6   5   3]
L R

Swap, and repeat: [2   1   1 | 4   5   9   3   6   5   3]
R    L

Partition Function:
int Partition(Item A[], int start, int end, Item pivot ){

int L = start, R = end;

do {
swap( A[L] , A[R] );
while (A[L] < pivot ) L++;
while (!(A[R] < pivot)) R--;

} while (R > L);
return (L);

}
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Quicksort: find pivot

Pivoting
– Partitioning test requires at least 1 key with a value < that of the 

pivot, and 1 value > to that of the pivot.
– Therefore, pick the greater of the first two distinct values (if any).

Improving FindPivot
– Try and pick a pivot such that the list is split into equal size sublists, 

(a speedup that should cut the number of partition steps to about 2/3
that of picking the first element for the pivot).

† Choose the middle (median) of the first 3 elements.
† Pick k  elements at random from the list, sort them & use the 

median.
– There is a trade-off between reduced number of partitions & time to 

pick the pivot as k grows.

const int MISSING = -1;

int FindPivot(const Item A[], int start, int end ) {

Item firstkey; //value of first key found
int pivot; //pivot index
int k; //run right looking for other key

firstkey = A[start];
//return -1 if different keys are not found
pivot = MISSING;
k = start + 1;
//scan for different key
while ( (k <= end) && (pivot == MISSING) )

if (firstkey < A[k]) //select key
pivot = k;

else if (A[k] < firstkey)
pivot = start;

else
k++;

return pivot;
}
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Recursive Quicksort
Quicksort Function (recursive)

Average Case = O(NlogN )
– quicksort is based upon the intuition that swaps, (moves), should be 

performed over large distances to be most effective
– quicksort's average running time is faster than any currently known 

O(nlog2n) internal sorting algorithms (by a constant factor).
– For very small n  (e.g., n < 16) a simple O(n2) algorithm is actually 

faster than Quicksort.
– When the sublist is small, use another sorting algorithm.

Worst Case = O(N2 )
– In the worst case, every partition might split the list of size j - i + 1 

into a list with 1 element, and a list with j - i elements.
– A partition is split into sublists of size 1 & j-i when one of the first 

two items in the sublist is the largest item in the sublist which is 
chosen by findpivot.

– When will this worst case partitioning always occur?

const int MISSING = -1;
void QuickSort( Item A[], int start, int end ) {

// sort the array from start ... end
Item pivotKey;
int pivotIndex;
int k; //index of partition >= pivot

pivotIndex = FindPivot( A, start, end );
if (pivotIndex != MISSING) {

pivotKey = A[pivotIndex];
k = Partition( A, start, end, pivotKey );
QuickSort( A, start, k-1 );
QuickSort( A, k, end );

}
}
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Iterative Quicksort 

Iterative Conversion
– Iterative implementation requires using a stack to store the partition 

bounds remaining to be sorted.
– Assume a stack implementation of elements consisting of two 

integers:

Partitioning
– At the end of any given partition, only one subpartition need be 

stacked. 
– The second subpartition (equated to the second recursive call), need 

not be stacked since it is immediately used for the next
subpartitioning.

Stacking
– The order of the recursive calls, (i.e., the sorting of the

subpartitions) may be made in any order.
– Stacking the larger subpartition assures that the size of the stack is 

minimized, since the smaller subpartition will be further divided 
less times than the larger subpartition.

struct StackItem {
int low, hi;

};
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Iterative Quicksort Code
Quicksort Function (iterative)
void QuickSort( Item A[], int start, int end ) {

// sort the array from start ... end
Item pivotKey;
int pivotIndex, tmpBnd;
int k; //index of partition >= pivot
StackItem parts;
Stack subParts;

parts.low = start; parts.hi = end;
subParts.Push ( parts );

while ( ! subParts.Empty() ) {
parts = subParts.Pop();

while ( parts.hi > parts.low ) {
pivotIndex = FindPivot( A, parts.low, parts.hi );

if (pivotIndex != MISSING) {
pivotKey = A[pivotIndex];
k = Partition( A, parts.low , parts.hi , pivotKey );
// push the larger subpartition

if ( (k-parts.low) > (parts.hi-k) ) { //stk low part
tmpBnd = parts.hi;
parts.hi = k-1;
subParts.Push( parts );
parts.low = k; //set current part to upper part
parts.hi = tmpBnd;

} //end if
else { // stack upper (larger) part

tmpBnd = parts.low;
parts.low = k;
subParts.Push( parts );
parts.low = tmpBnd; //set current part to low part
parts.hi = k-1;

} // end else
} // end if

else // halt inner loop when all elements equal
parts.hi = parts.low;

} // end while

} // end while

} // end QuickSort
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Quicksort Efficiency

Graphical Trace

Minor Improvements
– All function calls should be replaced by inline code to avoid 

function overhead.
– Current partition bounds should be held in register variables.

Working

Working

Working
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Sorting Considerations

General
– With large data records, swap pointers instead of copying 

records:

–

There’s a tradeoff here between storage cost and time.  
There’s also a time versus time tradeoff.  We’re accepting 
the cost of additional pointer dereferences to avoid the cost 
of some data copying.

– Carefully investigate the average data arrangement in order 
to select the optimal sorting algorithm.

– No one algorithm works the best in all cases.

record 2

record 1

record j

•
•
•

2

1

•
•
•

j
be f or e s w a ppi ng f i r s t t w o ke ys

•
•
•

record 2

record 1

record j

1

2

•
•
•

j
a f t e r s w a ppi ng f i r s t t w o ke ys
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Better than n log(n)?

Special Techniques for Special Cases
– If sort key (member) consists of consecutive (unique) N 

integers they can be easily mapped onto the range 0 .. N-1 & 
sorted.

– If the N elements are initially in array A, then:

takes O(n) time.
– Requires exactly 1 record with each key value!
– Of course, this is a very special circumstance…
– Special case of Bin Sorting. (If integers are not consecutive, 

but within a reasonable range, used bit flags can be used to 
denote empty array slots.)

Item A[], B[];

for (int i = 0; i < N; i++ )
B[A[i].GetKey() % N] = A[i];
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BinSort

BinSort is a somewhat more general O(N) sort technique.
Assume we need to sort an array of integers in the range 0-99:

34 16 83 76 40 72 38 80 89 87

Assume we have an array of 10 linked lists (bins) for storage.  

First make a pass through the list of integers, and place each into the bin 
that matches its 1’s digit.

Then, make a second pass, taking each bin in order, and place each integer 
into the bin that matches its 2’s digit.

Bin
0: 40 80
1:
2: 72
3: 83
4: 34
5:
6: 16 76
7: 87
8: 38
9: 89

Bin
0:
1: 16
2:
3: 34 38
4: 40
5:
6:
7: 72 76
8: 80 83 87 89
9:

Now if you just read the bins, in order, the elements will appear in 
ascending order.  Each pass takes O(N) work, and the number of passes is 
just the number of digits in the largest integer in the original list.

That beats QuickSort, but only in a somewhat special case.
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BinSort Implementation
void BinSort(int Data[], int numData, LinkList Bin[]) {

// First pass:
for (int Idx = 0; Idx < numData; Idx++) {

int Digit1 = Data[Idx] % 10;
Bin[Digit1].gotoTail();
Bin[Digit1].Insert(Item(Data[Idx]));//append to end

}
// Second pass:
LinkList Bin2[NumBins];
for (Idx = 0; Idx < 10; Idx++) {

Bin[Idx].gotoHead();
while (Bin[Idx].inList()) {

int currValue =
Bin[Idx].getCurrentData().getValue();

int Digit2 = (currValue / 10) % 10;
Bin2[Digit2].gotoTail(); //append to end
Bin2[Digit2].Insert(Item(currValue));
Bin[Idx].Advance();

}
}
LinearizeBins(Bin2, Data);

}

Note the modular 
reuse here of the 
linked list code 
covered earlier.

void LinearizeBins(LinkList Bin[], int Target[]) {

int Tidx = 0;

for (int Idx = 0; Idx < 10; Idx++) {
Bin[Idx].gotoHead();
while (Bin[Idx].inList()) {

Target[Tidx] =
Bin[Idx].getCurrentData().getValue();

Tidx++;
Bin[Idx].Advance();

}
}

}


